Suppr超能文献

氧化石墨烯分层图案诱导人神经干细胞分化为具有电生理功能的神经元样细胞。

Graphene Oxide Hierarchical Patterns for the Derivation of Electrophysiologically Functional Neuron-like Cells from Human Neural Stem Cells.

机构信息

Department of Biotechnology, Yonsei University , Seoul 120-749, Republic of Korea.

Department of Biomaterials Science and Engineering, Yonsei University , Seoul 120-749, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2016 Jul 20;8(28):17763-74. doi: 10.1021/acsami.6b01804. Epub 2016 Jul 5.

Abstract

Graphene has shown great potential for biomedical engineering applications due to its electrical conductivity, mechanical strength, flexibility, and biocompatibility. Topographical cues of culture substrates or tissue-engineering scaffolds regulate the behaviors and fate of stem cells. In this study, we developed a graphene oxide (GO)-based patterned substrate (GPS) with hierarchical structures capable of generating synergistic topographical stimulation to enhance integrin clustering, focal adhesion, and neuronal differentiation in human neural stem cells (hNSCs). The hierarchical structures of the GPS were composed of microgrooves (groove size: 5, 10, and 20 μm), ridges (height: 100-200 nm), and nanoroughness surfaces (height: ∼10 nm). hNSCs grown on the GPS exhibited highly elongated, aligned neurite extension along the ridge of the GPS and focal adhesion development that was enhanced compared to that of cells grown on GO-free flat substrates and GO substrates without the hierarchical structures. In particular, GPS with a groove width of 5 μm was found to be the most effective in activating focal adhesion signaling, such as the phosphorylation of focal adhesion kinase and paxillin, thereby improving neuronal lineage commitment. More importantly, electrophysiologically functional neuron-like cells exhibiting sodium channel currents and action potentials could be derived from hNSCs differentiated on the GPS even in the absence of any of the chemical agents typically required for neurogenesis. Our study demonstrates that GPS could be an effective culture platform for the generation of functional neuron-like cells from hNSCs, providing potent therapeutics for treating neurodegenerative diseases and neuronal disorders.

摘要

由于其导电性、机械强度、柔韧性和生物相容性,石墨烯在生物医学工程应用中显示出巨大的潜力。培养底物或组织工程支架的形貌线索调节干细胞的行为和命运。在这项研究中,我们开发了一种具有分层结构的基于氧化石墨烯(GO)的图案化基底(GPS),能够产生协同的形貌刺激,以增强人神经干细胞(hNSC)中整合素聚集、黏附和神经元分化。GPS 的分层结构由微槽(槽宽:5、10 和 20 μm)、脊(高度:100-200 nm)和纳米粗糙度表面(高度:约 10 nm)组成。在 GPS 上生长的 hNSC 表现出高度拉长的、沿 GPS 脊延伸的对齐神经突延伸,并且与在无 GO 平坦基底和无分层结构的 GO 基底上生长的细胞相比,黏附发展得到增强。特别是,宽度为 5 μm 的 GPS 被发现最有效地激活黏附斑信号,如黏附斑激酶和桩蛋白的磷酸化,从而改善神经元谱系的决定。更重要的是,即使没有通常用于神经发生的任何化学试剂,也可以从在 GPS 上分化的 hNSC 中获得表现出钠离子通道电流和动作电位的电生理功能神经元样细胞。我们的研究表明,GPS 可以成为从 hNSC 产生功能神经元样细胞的有效培养平台,为治疗神经退行性疾病和神经元疾病提供有效的治疗方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验