Suppr超能文献

通过软光刻和3D打印增强人类神经干细胞分化及制造神经导管的微/纳米图案

Micro/nano-patterns for enhancing differentiation of human neural stem cells and fabrication of nerve conduits via soft lithography and 3D printing.

作者信息

Litowczenko Jagoda, Wychowaniec Jacek K, Załęski Karol, Marczak Łukasz, Edwards-Gayle Charlotte J C, Tadyszak Krzysztof, Maciejewska Barbara M

机构信息

NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland.

NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland; AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.

出版信息

Biomater Adv. 2023 Nov;154:213653. doi: 10.1016/j.bioadv.2023.213653. Epub 2023 Oct 10.

Abstract

Topographical cues on materials can manipulate cellular fate, particularly for neural cells that respond well to such cues. Utilizing biomaterial surfaces with topographical features can effectively influence neuronal differentiation and promote neurite outgrowth. This is crucial for improving the regeneration of damaged neural tissue after injury. Here, we utilized groove patterns to create neural conduits that promote neural differentiation and axonal growth. We investigated the differentiation of human neural stem cells (NSCs) on silicon dioxide groove patterns with varying height-to-width/spacing ratios. We hypothesize that NSCs can sense the microgrooves with nanoscale depth on different aspect ratio substrates and exhibit different morphologies and differentiation fate. A comprehensive approach was employed, analyzing cell morphology, neurite length, and cell-specific markers. These aspects provided insights into the behavior of the investigated NSCs and their response to the topographical cues. Three groove-pattern models were designed with varying height-to-width/spacing ratios of 80, 42, and 30 for groove pattern widths of 1 μm, 5 μm, and 10 μm and nanoheights of 80 nm, 210 nm, and 280 nm. Smaller groove patterns led to longer neurites and more effective differentiation towards neurons, whereas larger patterns promoted multidimensional differentiation towards both neurons and glia. We transferred these cues onto patterned polycaprolactone (PCL) and PCL-graphene oxide (PCL-GO) composite 'stamps' using simple soft lithography and reproducible extrusion 3D printing methods. The patterned scaffolds elicited a response from NSCs comparable to that of silicon dioxide groove patterns. The smallest pattern stimulated the highest neurite outgrowth, while the middle-sized grooves of PCL-GO induced effective synaptogenesis. We demonstrated the potential for such structures to be wrapped into tubes and used as grafts for peripheral nerve regeneration. Grooved PCL and PCL-GO conduits could be a promising alternative to nerve grafting.

摘要

材料上的拓扑线索可以操纵细胞命运,对于对这类线索反应良好的神经细胞而言尤其如此。利用具有拓扑特征的生物材料表面能够有效影响神经元分化并促进神经突生长。这对于改善损伤后受损神经组织的再生至关重要。在此,我们利用沟槽图案制作促进神经分化和轴突生长的神经导管。我们研究了人神经干细胞(NSCs)在具有不同高宽比/间距比的二氧化硅沟槽图案上的分化情况。我们假设神经干细胞能够感知不同纵横比底物上具有纳米级深度的微沟槽,并表现出不同的形态和分化命运。我们采用了一种综合方法,分析细胞形态、神经突长度和细胞特异性标记物。这些方面为所研究的神经干细胞的行为及其对拓扑线索的反应提供了见解。设计了三种沟槽图案模型,对于宽度为1μm、5μm和10μm且纳米高度为80nm、210nm和280nm的沟槽图案,其高宽比/间距比分别为80、42和30。较小的沟槽图案会导致更长的神经突以及向神经元的更有效分化,而较大的图案则促进向神经元和神经胶质细胞的多维度分化。我们使用简单的软光刻和可重复的挤出3D打印方法将这些线索转移到图案化的聚己内酯(PCL)和聚己内酯 - 氧化石墨烯(PCL - GO)复合“印章”上。图案化支架引发的神经干细胞反应与二氧化硅沟槽图案相当。最小的图案刺激了最高的神经突生长,而PCL - GO的中等尺寸沟槽诱导了有效的突触形成。我们证明了这种结构被包裹成管并用作周围神经再生移植物的潜力。带沟槽的PCL和PCL - GO导管可能是神经移植的一种有前景的替代方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验