Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China.
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Small. 2016 Aug;12(30):4077-85. doi: 10.1002/smll.201601110. Epub 2016 Jun 20.
Nanocomposites (denoted RGO/ZnONRA) comprising reduced graphene oxide (RGO) draped over the surface of zinc oxide nanorod array (ZnONRA) were produced via a simple low-temperature route, dispensing with the need for hydrothermal growth, electrochemical deposition or other complex treatments. The amount of deposited RGO can be readily tuned by controlling the concentration of graphene oxide (GO). Interestingly, the addition of Sn(2+) not only enables the reduction of GO, but also functions as a bridge that connects the resulting RGO and ZnONRA. Remarkably, the incorporation of RGO improves the visible-light absorption and reduces the bandgap of ZnO, thereby leading to the markedly improved visible-light photocatalytic performance. Moreover, RGO/ZnONRA nanocomposites exhibit a superior stability as a result of the surface protection of ZnONRA by RGO. The mechanism on the improved photocatalytic performance based on the cophotosensitizations under the visible-light irradiation has been proposed. This simple yet effective route to the RGO-decorated semiconductor nanocomposites renders the better visible-light utilization, which may offer great potential for use in photocatalytic degradation of organic pollutants, solar cells, and optoelectronic materials and devices.
包含在氧化锌纳米棒阵列(ZnONRA)表面的还原氧化石墨烯(RGO)的纳米复合材料(表示为 RGO/ZnONRA)通过一种简单的低温方法制备,无需水热生长、电化学沉积或其他复杂处理。通过控制氧化石墨烯(GO)的浓度可以很容易地调整沉积的 RGO 的量。有趣的是,添加 Sn(2+)不仅能够还原 GO,而且还可以作为连接所得 RGO 和 ZnONRA 的桥梁。值得注意的是,RGO 的掺入提高了 ZnO 的可见光吸收并降低了带隙,从而导致可见光光催化性能显著提高。此外,由于 RGO 对 ZnONRA 的表面保护,RGO/ZnONRA 纳米复合材料表现出优异的稳定性。提出了基于可见光照射下共敏化作用的改善光催化性能的机理。这种简单而有效的方法制备了 RGO 修饰的半导体纳米复合材料,提高了可见光的利用率,这可能为光催化降解有机污染物、太阳能电池以及光电材料和器件的应用提供了巨大的潜力。