Pan Xiaoyang, Yang Min-Quan, Xu Yi-Jun
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, 350002, P.R. China.
Phys Chem Chem Phys. 2014 Mar 28;16(12):5589-99. doi: 10.1039/c3cp55038a. Epub 2014 Feb 11.
Zinc oxide (ZnO) nanostructured materials have received significant attention because of their unique physicochemical and electronic properties. In particular, the functional properties of ZnO are strongly dependent on its morphology and defect structure, particularly for a semiconductor ZnO-based photocatalyst. Here, we demonstrate a simple strategy for simultaneous morphology control, defect engineering and photoactivity tuning of semiconductor ZnO by utilizing the unique surfactant properties of graphene oxide (GO) in a liquid phase. By varying the amount of GO added during the synthesis process, the morphology of ZnO gradually evolves from a one dimensional prismatic rod to a hexagonal tube-like architecture while GO is converted into reduced GO (RGO). In addition, the introduction of GO can create oxygen vacancies in the lattice of ZnO crystals. As a result, the absorption edge of the wide band gap semiconductor ZnO is effectively extended to the visible light region, which thus endows the RGO-ZnO nanocomposites with visible light photoactivity; in contrast, the bare ZnO nanorod is only UV light photoactive. The synergistic integration of the unique morphology and the presence of oxygen vacancies imparts the RGO-ZnO nanocomposite with remarkably enhanced visible light photoactivity as compared to bare ZnO and its counterpart featuring different structural morphologies and the absence of oxygen vacancies. Our promising results highlight the versatility of the 2D GO as a solution-processable macromolecular surfactant to fabricate RGO-semiconductor nanocomposites with tunable morphology, defect structure and photocatalytic performance in a system-materials-engineering way.
氧化锌(ZnO)纳米结构材料因其独特的物理化学和电子性质而受到广泛关注。特别是,ZnO的功能性质强烈依赖于其形态和缺陷结构,对于基于半导体ZnO的光催化剂而言尤其如此。在此,我们展示了一种简单的策略,通过利用氧化石墨烯(GO)在液相中的独特表面活性剂性质,同时对半导体ZnO进行形态控制、缺陷工程和光活性调节。通过改变合成过程中添加的GO量,ZnO的形态逐渐从一维棱柱形棒演变为六方管状结构,而GO则转化为还原氧化石墨烯(RGO)。此外,GO的引入可以在ZnO晶体晶格中产生氧空位。结果,宽带隙半导体ZnO的吸收边缘有效地扩展到可见光区域,从而赋予RGO-ZnO纳米复合材料可见光光活性;相比之下,裸ZnO纳米棒仅具有紫外光光活性。与裸ZnO及其具有不同结构形态且不存在氧空位的对应物相比,独特形态和氧空位的协同整合赋予了RGO-ZnO纳米复合材料显著增强的可见光光活性。我们的 promising 结果突出了二维GO作为一种可溶液加工的大分子表面活性剂的多功能性,能够以系统-材料-工程的方式制备具有可调形态、缺陷结构和光催化性能的RGO-半导体纳米复合材料。 (注:promising 未找到合适中文对应词,保留英文)