Suppr超能文献

使用多重相干反斯托克斯拉曼散射相关光谱法追踪体相和界面扩散

Tracking Bulk and Interfacial Diffusion Using Multiplex Coherent Anti-Stokes Raman Scattering Correlation Spectroscopy.

作者信息

Bailey Karen A, Schultz Zachary D

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States.

出版信息

J Phys Chem B. 2016 Jul 14;120(27):6819-28. doi: 10.1021/acs.jpcb.6b04304. Epub 2016 Jun 28.

Abstract

Multiplex coherent anti-Stokes Raman scattering correlation spectroscopy (CARS-CS) is shown as a label-free, chemically specific approach for monitoring the molecular mobility of particles in solution and at interfaces on the millisecond time scale. The CARS spectral range afforded by broadband excitation facilitates a quantitative measurement for the number of particles in the focal volume, whereas the autocorrelation of spectral data elucidates dynamic events, such as diffusion. The measured diffusion coefficients for polymer beads ranging from 100 nm to 1.1 μm in diameter are on the order of 10(-8)-10(-9) cm(2)/s, in good agreement with predicted Stokes-Einstein values. Diffusion at different interfaces shows particles are fastest in bulk medium, marginally slower at the liquid/glass interface, and 1.5-2 times slower rate at the air/liquid interface. Multivariate curve resolution analysis of distinct spectral features in multiplex CARS measurement distinguishes different composition lipid vesicles in a mixture diffusing through the focal volume. The observed diffusion is consistent with results obtained from single particle tracking experiments. This work demonstrates the utility of multiplex CARS correlation spectroscopy for monitoring particle diffusion from different chemical species across diverse interfaces.

摘要

多路相干反斯托克斯拉曼散射相关光谱法(CARS-CS)是一种无标记、具有化学特异性的方法,用于在毫秒时间尺度上监测溶液中和界面处粒子的分子迁移率。宽带激发提供的CARS光谱范围有助于对焦体积内的粒子数量进行定量测量,而光谱数据的自相关则阐明了诸如扩散等动态事件。直径从100 nm到1.1 μm的聚合物珠的测量扩散系数约为10^(-8)-10^(-9) cm^(2)/s,与预测的斯托克斯-爱因斯坦值高度吻合。在不同界面处的扩散表明,粒子在本体介质中最快,在液/玻璃界面处稍慢,在气/液界面处速率慢1.5-2倍。多路CARS测量中不同光谱特征的多元曲线分辨分析可区分混合溶液中通过焦体积扩散的不同组成的脂质囊泡。观察到的扩散与单粒子跟踪实验获得的结果一致。这项工作证明了多路CARS相关光谱法在监测不同化学物种在不同界面处的粒子扩散方面的实用性。

相似文献

1
Tracking Bulk and Interfacial Diffusion Using Multiplex Coherent Anti-Stokes Raman Scattering Correlation Spectroscopy.
J Phys Chem B. 2016 Jul 14;120(27):6819-28. doi: 10.1021/acs.jpcb.6b04304. Epub 2016 Jun 28.
2
Surface enhanced Raman correlation spectroscopy of particles in solution.
Anal Chem. 2014 Mar 4;86(5):2625-32. doi: 10.1021/ac403882h. Epub 2014 Feb 17.
3
Quantitative multiplex CARS spectroscopy in congested spectral regions.
J Phys Chem B. 2006 Mar 9;110(9):4472-9. doi: 10.1021/jp0564849.
4
Label-free coherent anti-stokes Raman scattering imaging of coexisting lipid domains in single bilayers.
J Phys Chem B. 2008 Feb 14;112(6):1576-9. doi: 10.1021/jp711527v. Epub 2008 Jan 24.
5
Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues.
Biophys J. 2005 Jul;89(1):581-91. doi: 10.1529/biophysj.105.061911. Epub 2005 Apr 15.
6
Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition.
Chemphyschem. 2007 Feb 2;8(2):279-87. doi: 10.1002/cphc.200600481.
8
Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy.
J Phys Chem B. 2006 Mar 23;110(11):5196-204. doi: 10.1021/jp057493k.
10
Quantitative chemical imaging with background-free multiplex coherent anti-Stokes Raman scattering by dual-soliton Stokes pulses.
Biomed Opt Express. 2016 Sep 9;7(10):3927-3939. doi: 10.1364/BOE.7.003927. eCollection 2016 Oct 1.

引用本文的文献

1
Chemical Analysis of Morphological Changes in Lysophosphatidic Acid-Treated Ovarian Cancer Cells.
Sci Rep. 2017 Nov 10;7(1):15295. doi: 10.1038/s41598-017-15547-7.

本文引用的文献

1
Label-Free Fluctuation Spectroscopy Based on Coherent Anti-Stokes Raman Scattering from Bulk Water Molecules.
Chemphyschem. 2016 Apr 4;17(7):1025-33. doi: 10.1002/cphc.201501129. Epub 2016 Feb 11.
2
Imaging fluorescence-correlation spectroscopy for measuring fast surface diffusion at liquid/solid interfaces.
Anal Chem. 2014 Aug 5;86(15):7618-26. doi: 10.1021/ac5014354. Epub 2014 Jul 9.
3
Recent applications of fluorescence correlation spectroscopy in live systems.
FEBS Lett. 2014 Oct 1;588(19):3571-84. doi: 10.1016/j.febslet.2014.03.056. Epub 2014 Apr 12.
4
Surface enhanced Raman correlation spectroscopy of particles in solution.
Anal Chem. 2014 Mar 4;86(5):2625-32. doi: 10.1021/ac403882h. Epub 2014 Feb 17.
5
Advances in biomedical Raman microscopy.
Anal Chem. 2014 Jan 7;86(1):30-46. doi: 10.1021/ac403640f. Epub 2013 Nov 20.
6
Non-resonant and non-enhanced Raman correlation spectroscopy.
Opt Express. 2013 Jul 1;21(13):15418-29. doi: 10.1364/OE.21.015418.
7
Coherent anti-Stokes emission from gold nanorods and its potential for imaging applications.
Chemphyschem. 2013 Jun 24;14(9):1951-5. doi: 10.1002/cphc.201300091. Epub 2013 May 6.
8
Biomolecular imaging with coherent nonlinear vibrational microscopy.
Annu Rev Phys Chem. 2013;64:77-99. doi: 10.1146/annurev-physchem-040412-110103. Epub 2012 Dec 5.
9
Label-free in situ detection of individual macromolecular assemblies by surface enhanced Raman scattering.
Chem Commun (Camb). 2013 May 14;49(39):4340-2. doi: 10.1039/c2cc37268a. Epub 2012 Oct 29.
10
Single-molecule tracking in living cells using single quantum dot applications.
Theranostics. 2012;2(7):655-67. doi: 10.7150/thno.3890. Epub 2012 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验