Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 S. 33rd Street, Philadelphia, Pennsylvania 19104-6393, USA.
Nat Mater. 2016 Sep;15(9):1031-6. doi: 10.1038/nmat4663. Epub 2016 Jun 20.
Many seemingly different soft materials-such as soap foams, mayonnaise, toothpaste and living cells-display strikingly similar viscoelastic behaviour. A fundamental physical understanding of such soft glassy rheology and how it can manifest in such diverse materials, however, remains unknown. Here, by using a model soap foam consisting of compressible spherical bubbles, whose sizes slowly evolve and whose collective motion is simply dictated by energy minimization, we study the foam's dynamics as it corresponds to downhill motion on an energy landscape function spanning a high-dimensional configuration space. We find that these downhill paths, when viewed in this configuration space, are, surprisingly, fractal. The complex behaviour of our model, including power-law rheology and non-diffusive bubble motion and avalanches, stems directly from the fractal dimension and energy function of these paths. Our results suggest that ubiquitous soft glassy rheology may be a consequence of emergent fractal geometry in the energy landscapes of many complex fluids.
许多看似不同的软物质,如肥皂泡沫、蛋黄酱、牙膏和活细胞,表现出惊人相似的粘弹性行为。然而,对于这种软玻璃态流变学的基本物理理解,以及它如何在如此多样的材料中表现出来,仍然未知。在这里,我们使用了一种由可压缩的球形气泡组成的模型肥皂泡沫,这些气泡的大小缓慢演变,其集体运动仅仅由能量最小化决定,我们研究了泡沫的动力学,因为它对应于跨越高维构形空间的能量景观函数上的下坡运动。我们发现,这些下坡路径在这个构形空间中,令人惊讶的是,是分形的。我们模型的复杂行为,包括幂律流变学和非扩散气泡运动和雪崩,直接源于这些路径的分形维数和能量函数。我们的结果表明,普遍存在的软玻璃态流变学可能是许多复杂流体的能量景观中出现分形几何的结果。