Koch Peter M, Kunz Alexander, Ebinger Martin, Geisler Frederik, Rozanski Michal, Waldschmidt Carolin, Weber Joachim E, Wendt Matthias, Winter Benjamin, Zieschang Katja, Bollweg Kerstin, Kaczmarek Sabina, Endres Matthias, Audebert Heinrich J
From the Klinik und Hochschulambulanz für Neurologie (P.M.K., A.K., M.E., F.G., M.R., C.W., J.E.W., M.W., B.W., K.Z., M.E., H.J.A.), Center for Stroke Research Berlin (A.K., M.E., M.R., K.B., M.E., H.J.A.), German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin (M.E.), and German Center for Cardiovascular Research (DZHK), Partner Site Berlin (M.E.), Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Fire Brigade, Berlin, Germany (S.K.); and Berlin Institute of Health (BIH), Berlin, Germany (K.B., M.E.).
Stroke. 2016 Aug;47(8):2136-40. doi: 10.1161/STROKEAHA.116.013057. Epub 2016 Jun 21.
Specialized computed tomography-equipped stroke ambulances shorten time to intravenous thrombolysis in acute ischemic stroke by starting treatment before hospital arrival. Because of longer travel-time-to-scene, time benefits of this concept are expected to diminish with longer distances from base station to scene.
We used data from the Prehospital Acute Neurological Treatment and Optimization of Medical Cares in Stroke (PHANTOM-S) trial comparing time intervals between patients for whom a specialized stroke ambulance (stroke emergency mobile) was deployed and patients with conventional emergency medical service. Expected times from base station to scene had been calculated beforehand using computer algorithms informed by emergency medical service routine data. Four different deployment zones with-75% probability-expected arrival within 4, 8, 12, and 16 minutes and total population coverage of ≈1.3 million inhabitants were categorized for stroke emergency mobile deployment. We analyzed times from alarm-to-arrival at scene, to start of intravenous thrombolysis and from onset-to-intravenous thrombolysis.
Corresponding to the size of the respective catchment zone, the number of patients cared increased with distance (zone 1: n=30, zone 2: n=127, zone 3: n=156, and zone 4: n=217). Although time to stroke emergency mobile arrival increased with distance (mean: 8.0, 12.5, 15.4, and 18.4 minutes in zones 1-4), time from alarm-to-intravenous thrombolysis (mean: 41.8 versus 76.5; 50.2 versus 79.1; 54.5 versus 76.6; and 59.3 versus 78.0 minutes, respectively; all P<0.01) remained shorter in the stroke emergency mobile group across all zones.
In a metropolitan area such as Berlin, time benefits justify a specialized stroke ambulance service up to a mean travel time of 18 minutes from base station.
URL: https://www.clinicaltrials.gov. Unique identifier: NCT01382862.
配备专用计算机断层扫描设备的中风救护车通过在到达医院前就开始治疗,缩短了急性缺血性中风患者接受静脉溶栓治疗的时间。由于到达现场的行程时间较长,预计随着基站到现场距离的增加,这一概念的时间优势会减弱。
我们使用了来自院前急性神经治疗与中风医疗优化(PHANTOM-S)试验的数据,比较了部署专用中风救护车(中风急救移动车)的患者与接受常规紧急医疗服务的患者之间的时间间隔。基站到现场的预计时间此前已使用基于紧急医疗服务常规数据的计算机算法进行计算。将四个不同的部署区域分类用于中风急救移动车的部署,在这些区域内,有75%的概率预计在4、8、12和16分钟内到达,总人口覆盖约130万居民。我们分析了从报警到到达现场、到开始静脉溶栓以及从发病到静脉溶栓的时间。
与各个集水区的规模相对应,接受治疗的患者数量随距离增加(1区:n = 30,2区:n = 127,3区:n = 156,4区:n = 217)。尽管中风急救移动车到达的时间随距离增加(1 - 4区平均分别为8.0、12.5、15.4和18.4分钟),但在所有区域中,中风急救移动车组从报警到静脉溶栓的时间(平均分别为41.8对76.5;50.2对79.1;54.5对76.6;59.3对78.0分钟;均P < 0.01)仍然更短。
在柏林这样的大都市地区,时间优势证明了在基站平均行程时间长达18分钟的情况下提供专用中风救护车服务是合理 的。