Chen Xing, Zeng Yan, Yin Yuehong
IEEE Trans Neural Syst Rehabil Eng. 2017 Jun;25(6):577-588. doi: 10.1109/TNSRE.2016.2582321. Epub 2016 Jun 20.
Transparent control is still highly challenging for robotic exoskeletons, especially when a simple strategy is expected for a large-impedance device. To improve the transparency for late-phase rehabilitation when "patient-in-charge" mode is necessary, this paper aims at adaptive identification of human motor intent, and proposed an iterative prediction-compensation motion control scheme for an exoskeleton knee joint. Based on the analysis of human-machine interactive mechanism (HMIM) and the semiphenomenological biomechanical model of muscle, an online adaptive predicting controller is designed using a focused time-delay neural network (FTDNN) with the inputs of electromyography (EMG), position and interactive force, where the activation level of muscle is estimated from EMG using a novel energy kernel method. The compensating controller is designed using the normative force-position control paradigm. Initial experiments on the human-machine integrated knee system validated the effectiveness and ease of use of the proposed control scheme.
对于机器人外骨骼而言,实现透明控制仍然极具挑战性,尤其是当期望为大阻抗设备采用简单策略时。为了在需要“患者主导”模式的后期康复中提高透明度,本文旨在对人类运动意图进行自适应识别,并提出了一种用于外骨骼膝关节的迭代预测 - 补偿运动控制方案。基于对人机交互机制(HMIM)和肌肉半现象学生物力学模型的分析,使用聚焦时延神经网络(FTDNN)设计了一种在线自适应预测控制器,其输入为肌电图(EMG)、位置和交互力,其中使用一种新颖的能量核方法从EMG估计肌肉的激活水平。补偿控制器采用规范的力 - 位置控制范式进行设计。在人机集成膝关节系统上进行的初步实验验证了所提出控制方案的有效性和易用性。