Suppr超能文献

基于表面肌电信号的手部运动分类机器学习方法评估中的运动错误率

Movement error rate for evaluation of machine learning methods for sEMG-based hand movement classification.

作者信息

Gijsberts Arjan, Atzori Manfredo, Castellini Claudio, Muller Henning, Caputo Barbara

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):735-44. doi: 10.1109/TNSRE.2014.2303394. Epub 2014 Jan 29.

Abstract

There has been increasing interest in applying learning algorithms to improve the dexterity of myoelectric prostheses. In this work, we present a large-scale benchmark evaluation on the second iteration of the publicly released NinaPro database, which contains surface electromyography data for 6 DOF force activations as well as for 40 discrete hand movements. The evaluation involves a modern kernel method and compares performance of three feature representations and three kernel functions. Both the force regression and movement classification problems can be learned successfully when using a nonlinear kernel function, while the exp- χ(2) kernel outperforms the more popular radial basis function kernel in all cases. Furthermore, combining surface electromyography and accelerometry in a multimodal classifier results in significant increases in accuracy as compared to when either modality is used individually. Since window-based classification accuracy should not be considered in isolation to estimate prosthetic controllability, we also provide results in terms of classification mistakes and prediction delay. To this extent, we propose the movement error rate as an alternative to the standard window-based accuracy. This error rate is insensitive to prediction delays and it allows us therefore to quantify mistakes and delays as independent performance characteristics. This type of analysis confirms that the inclusion of accelerometry is superior, as it results in fewer mistakes while at the same time reducing prediction delay.

摘要

将学习算法应用于提高肌电假肢的灵活性已引发了越来越多的关注。在这项工作中,我们对公开发布的NinaPro数据库的第二次迭代进行了大规模基准评估,该数据库包含用于6自由度力激活以及40种离散手部动作的表面肌电图数据。评估涉及一种现代核方法,并比较了三种特征表示和三种核函数的性能。当使用非线性核函数时,力回归和动作分类问题都能成功学习,而指数χ(2)核在所有情况下都优于更常用的径向基函数核。此外,与单独使用任何一种模态相比,在多模态分类器中结合表面肌电图和加速度计可显著提高准确率。由于不应孤立地考虑基于窗口的分类准确率来评估假肢的可控性,我们还提供了分类错误和预测延迟方面的结果。在此范围内,我们提出动作错误率作为基于窗口的标准准确率的替代指标。该错误率对预测延迟不敏感,因此它使我们能够将错误和延迟量化为独立的性能特征。这种类型的分析证实,加入加速度计更具优势,因为它能减少错误,同时降低预测延迟。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验