Kassiri Hossein, Chemparathy Aditi, Salam M Tariqus, Boyce Richard, Adamantidis Antoine, Genov Roman
IEEE Trans Biomed Circuits Syst. 2017 Feb;11(1):177-188. doi: 10.1109/TBCAS.2016.2540438. Epub 2016 Jun 16.
First, existing sleep stage classifier sensors and algorithms are reviewed and compared in terms of classification accuracy, level of automation, implementation complexity, invasiveness, and targeted application. Next, the implementation of a miniature microsystem for low-latency automatic sleep stage classification in rodents is presented. The classification algorithm uses one EMG (electromyogram) and two EEG (electroencephalogram) signals as inputs in order to detect REM (rapid eye movement) sleep, and is optimized for low complexity and low power consumption. It is implemented in an on-board low-power FPGA connected to a multi-channel neural recording IC, to achieve low-latency (order of 1 ms or less) classification. Off-line experimental results using pre-recorded signals from nine mice show REM detection sensitivity and specificity of 81.69% and 93.86%, respectively, with the maximum latency of 39 [Formula: see text]. The device is designed to be used in a non-disruptive closed-loop REM sleep suppression microsystem, for future studies of the effects of REM sleep deprivation on memory consolidation.
首先,对现有的睡眠阶段分类传感器和算法在分类准确率、自动化程度、实现复杂度、侵入性和目标应用方面进行了综述和比较。接下来,介绍了一种用于啮齿动物低延迟自动睡眠阶段分类的微型微系统的实现。该分类算法使用一个肌电图(EMG)和两个脑电图(EEG)信号作为输入,以检测快速眼动(REM)睡眠,并针对低复杂度和低功耗进行了优化。它在连接到多通道神经记录集成电路的板载低功耗现场可编程门阵列(FPGA)中实现,以实现低延迟(1毫秒或更低量级)分类。使用来自九只小鼠的预先记录信号的离线实验结果表明,REM检测的灵敏度和特异性分别为81.69%和93.86%,最大延迟为39[公式:见正文]。该设备设计用于无干扰的闭环REM睡眠抑制微系统,用于未来研究REM睡眠剥夺对记忆巩固的影响。