Suppr超能文献

温度和特定离子介导的碳水化合物表面的水合排斥作用。

Hydration Repulsion between Carbohydrate Surfaces Mediated by Temperature and Specific Ions.

机构信息

Aramco Services Company: Aramco Research Center - Boston, Cambridge, MA 02139, USA.

Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.

出版信息

Sci Rep. 2016 Jun 23;6:28553. doi: 10.1038/srep28553.

Abstract

Stabilizing colloids or nanoparticles in solution involves a fine balance between surface charges, steric repulsion of coating molecules, and hydration forces against van der Waals attractions. At high temperature and electrolyte concentrations, the colloidal stability of suspensions usually decreases rapidly. Here, we report a new experimental and simulation discovery that the polysaccharide (dextran) coated nanoparticles show ion-specific colloidal stability at high temperature, where we observed enhanced colloidal stability of nanoparticles in CaCl2 solution but rapid nanoparticle-nanoparticle aggregation in MgCl2 solution. The microscopic mechanism was unveiled in atomistic simulations. The presence of surface bound Ca(2+) ions increases the carbohydrate hydration and induces strongly polarized repulsive water structures beyond at least three hydration shells which is farther-reaching than previously assumed. We believe leveraging the binding of strongly hydrated ions to macromolecular surfaces represents a new paradigm in achieving absolute hydration and colloidal stability for a variety of materials, particularly under extreme conditions.

摘要

稳定胶体或纳米粒子在溶液中涉及到表面电荷、涂层分子的空间排斥以及水化力对抗范德华吸引力之间的精细平衡。在高温和电解质浓度下,悬浮液的胶体稳定性通常会迅速下降。在这里,我们报告了一个新的实验和模拟发现,多糖(葡聚糖)包覆的纳米粒子在高温下表现出离子特异性胶体稳定性,我们观察到纳米粒子在 CaCl2 溶液中的胶体稳定性增强,但在 MgCl2 溶液中纳米粒子迅速聚集。原子模拟揭示了微观机制。表面结合的 Ca(2+) 离子的存在增加了碳水化合物的水合作用,并诱导了强烈极化的排斥性水结构,超出了至少三个水合壳,这比以前的假设更远。我们相信,利用强水合离子与大分子表面的结合,代表了在各种材料中实现绝对水合和胶体稳定性的新范例,特别是在极端条件下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fad9/4917866/4c0d7772ea8d/srep28553-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验