Ulusoy Inga S, Andrienko Daniil A, Boyd Iain D, Hernandez Rigoberto
IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany.
Nonequilibrium Gas and Plasma Dynamics Laboratory, Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109-2140, USA.
J Chem Phys. 2016 Jun 21;144(23):234311. doi: 10.1063/1.4954041.
A hypersonic vehicle traveling at a high speed disrupts the distribution of internal states in the ambient flow and introduces a nonequilibrium distribution in the post-shock conditions. We investigate the vibrational relaxation in diatom-atom collisions in the range of temperatures between 1000 and 10 000 K by comparing results of extensive fully quantum-mechanical and quasi-classical simulations with available experimental data. The present paper simulates the interaction of molecular oxygen with argon as the first step in developing the aerothermodynamics models based on first principles. We devise a routine to standardize such calculations also for other scattering systems. Our results demonstrate very good agreement of vibrational relaxation time, derived from quantum-mechanical calculations with the experimental measurements conducted in shock tube facilities. At the same time, the quasi-classical simulations fail to accurately predict rates of vibrationally inelastic transitions at temperatures lower than 3000 K. This observation and the computational cost of adopted methods suggest that the next generation of high fidelity thermochemical models should be a combination of quantum and quasi-classical approaches.
高速飞行的高超声速飞行器会扰乱周围气流中内部状态的分布,并在激波后的条件下引入非平衡分布。我们通过将大量全量子力学和准经典模拟的结果与现有的实验数据进行比较,研究了在1000至10000 K温度范围内双原子 - 原子碰撞中的振动弛豫。本文模拟了分子氧与氩的相互作用,作为基于第一原理开发气动热力学模型的第一步。我们设计了一个程序,也为其他散射系统规范此类计算。我们的结果表明,从量子力学计算得出的振动弛豫时间与在激波管设施中进行的实验测量结果非常吻合。同时,准经典模拟在低于3000 K的温度下无法准确预测振动非弹性跃迁的速率。这一观察结果以及所采用方法的计算成本表明,下一代高保真热化学模型应该是量子和准经典方法的结合。