Jaccoulet Emmanuel, Boccard Julien, Taverna Myriam, Azevedos Andrea Santos, Rudaz Serge, Smadja Claire
Institut Galien Paris-Sud, UMR8612, Proteins and Nanotechnology in Analytical Science (PNAS), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 5 rue Jean Baptiste Clément, 92290, Châtenay-Malabry, France.
Hôpital Européen Georges Pompidou (HEGP), Service Pharmacie (AP-HP), 75015, Paris, France.
Anal Bioanal Chem. 2016 Aug;408(21):5915-5924. doi: 10.1007/s00216-016-9708-4. Epub 2016 Jun 22.
Monoclonal antibodies (mAbs) compounded into the hospital pharmacy are widely used nowadays. Their fast identification after compounding and just before administration to the patient is of paramount importance for quality control at the hospital. This remains challenging due to the high similarity of the structure between mAbs. Analysis of the ultraviolet spectral data of four monoclonal antibodies (cetuximab, rituximab, bevacizumab, and trastuzumab) using unsupervised principal component analysis led us to focus exclusively on the second-derivative spectra. Partial least squares-discriminant analysis (PLS-DA) applied to these data allowed us to build models for predicting which monoclonal antibody was present in a given infusion bag. The calibration of the models was obtained from a k-fold validation. A prediction set from another batch was used to demonstrate the ability of the models to predict well. PLS-DA models performed on the spectra of the region of aromatic amino acid residues presented high ability to predict mAb identity. The region corresponding to the tyrosine residue reached the highest score of good classification with 89 %. To improve the score, standard normal variate (SNV) preprocessing was applied to the spectral data. The quality of the optimized PLS-DA models was enhanced and the region from the tyrosine/tryptophan residues allowed us excellent classification (100 %) of the four mAbs according to the matrix of confusion. The sensitivity and specificity performance parameters assessed this excellent classification. The usefulness of the combination of UV second-derivative spectroscopy to multivariate analysis with SNV preprocessing demonstrated the unambiguous identification of commercially available monoclonal antibodies. Graphical abstract PLS-DA models on the spectra of the region of aromatic amino acid residues allows mAb identification with high prediction.
如今,医院药房配制的单克隆抗体(mAb)被广泛使用。在配制后且即将给患者给药前对其进行快速识别,对于医院的质量控制至关重要。由于单克隆抗体之间结构高度相似,这仍然具有挑战性。使用无监督主成分分析对四种单克隆抗体(西妥昔单抗、利妥昔单抗、贝伐单抗和曲妥珠单抗)的紫外光谱数据进行分析,使我们将重点完全放在二阶导数光谱上。将偏最小二乘判别分析(PLS-DA)应用于这些数据,使我们能够建立模型来预测给定输液袋中存在哪种单克隆抗体。模型的校准通过k折验证获得。使用来自另一批次的预测集来证明模型的良好预测能力。对芳香族氨基酸残基区域的光谱进行的PLS-DA模型表现出很高的预测单克隆抗体身份的能力。对应于酪氨酸残基的区域达到了89%的最高良好分类分数。为了提高分数,对光谱数据应用了标准正态变量(SNV)预处理。优化后的PLS-DA模型的质量得到了提高,酪氨酸/色氨酸残基区域根据混淆矩阵使我们能够对四种单克隆抗体进行出色的分类(100%)。通过敏感性和特异性性能参数评估了这种出色的分类。紫外二阶导数光谱与SNV预处理的多变量分析相结合的实用性证明了对市售单克隆抗体的明确识别。图形摘要:芳香族氨基酸残基区域光谱上的PLS-DA模型允许以高预测性识别单克隆抗体。