Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France; Faculty of Pharmacy, University of Gezira, P.O. Box 20, 21111 Wad Madani, Sudan.
Unité de Biopharmacie Clinique Oncologique, Pharmacie, CHU de Tours, France.
J Pharm Biomed Anal. 2021 Feb 5;194:113734. doi: 10.1016/j.jpba.2020.113734. Epub 2020 Nov 5.
The use of Raman spectroscopy for analytical quality control of anticancer drug preparations in clinical pharmaceutical dispensing units is increasing in popularity, notably supported by commercially available, purpose designed instruments. Although not legislatively compulsory, analytical methods are frequently used post-preparation to verify the accuracy of a preparation in terms of identity and quantity of the drug in solution. However, while the rapid, cost effective and label free analysis achieved with Raman spectroscopy is appealing, it is important to understand the molecular origin of the spectral contributions collected from the solution of actives and excipients, to evaluate the strength and limitation for the technique, which can be used to identify and quantify either the prescribed commercial formulation, and/or the active drug itself, in personalised solutions. In the current study, four commercial formulations, Erbitux®, Truxima®, Ontruzant® and Avastin® of monoclonal antibodies (mAbs), corresponding respectively to cetuximab, rituximab, trastuzumab and bevacizumab have been used to highlight the key role of excipients in discrimination and quantification of the formulations. It is demonstrated that protein based anticancer drugs such as mAbs have a relatively weak Raman response, while excipients such as glycine, trehalose or histidine contribute significantly to the spectra. Multivariate analysis (partial least square regression and partial least square discriminant analysis) further demonstrates that the signatures of the mAbs themselves are not prominent in mathematical models and that those of the excipients are solely responsible for the differentiation of formulation and accurate determination of concentrations. While Raman spectroscopy can successfully validate the conformity of mAbs intravenous infusion solutions, the basis for the analysis should be considered, and special caution should be given to excipient compositions in commercial formulations to ensure reliability and reproducibility of the analysis.
拉曼光谱法在临床药剂学配药单位中用于抗癌药物制剂的分析质量控制的应用越来越普及,这主要得到了商业上可用的、专门设计的仪器的支持。尽管没有法律强制要求,但分析方法经常在制剂后使用,以验证制剂在溶液中药物的身份和数量的准确性。然而,虽然拉曼光谱法实现的快速、经济高效和无标签分析很有吸引力,但重要的是要了解从活性物质和赋形剂的溶液中收集的光谱贡献的分子起源,以评估该技术的强度和局限性,该技术可用于识别和定量规定的商业配方,以及/或在个性化解决方案中的活性药物本身。在当前的研究中,使用了四种商业制剂,即 Erbitux®、Truxima®、Ontruzant®和Avastin®的单克隆抗体(mAbs),分别对应于西妥昔单抗、利妥昔单抗、曲妥珠单抗和贝伐单抗,以突出赋形剂在制剂的鉴别和定量中的关键作用。结果表明,像 mAbs 这样的基于蛋白质的抗癌药物的拉曼响应相对较弱,而赋形剂如甘氨酸、海藻糖或组氨酸对光谱有很大贡献。多元分析(偏最小二乘回归和偏最小二乘判别分析)进一步表明,mAbs 本身的特征在数学模型中并不突出,而赋形剂的特征仅负责制剂的区分和浓度的准确测定。虽然拉曼光谱法可以成功验证 mAbs 静脉输注溶液的一致性,但应考虑分析的基础,并特别注意商业制剂中赋形剂的组成,以确保分析的可靠性和重现性。