Pham Tuan Anh, Schreiber Andreas, Sturm Née Rosseeva Elena V, Schiller Stefan, Cölfen Helmut
Department of Chemistry, Physical Chemistry, University of Konstanz, Universitätstrasse 10, D-78457 Konstanz, Germany.
Zentrum für Biosystemanalyse (ZBSA), Albert-Ludwigs-Universität Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany.
Beilstein J Nanotechnol. 2016 Mar 4;7:351-63. doi: 10.3762/bjnano.7.32. eCollection 2016.
Hybrid nanoparticle (NP) structures containing organic building units such as polymers, peptides, DNA and proteins have great potential in biosensor and electronic applications. The nearly free modification of the polymer chain, the variation of the protein and DNA sequence and the implementation of functional moieties provide a great platform to create inorganic structures of different morphology, resulting in different optical and magnetic properties. Nevertheless, the design and modification of a protein structure with functional groups or sequences for the assembly of biohybrid materials is not trivial. This is mainly due to the sensitivity of its secondary, tertiary and quaternary structure to the changes in the interaction (e.g., hydrophobic, hydrophilic, electrostatic, chemical groups) between the protein subunits and the inorganic material. Here, we use hemolysin coregulated protein 1 (Hcp1) from Pseudomonas aeruginosa as a building and gluing unit for the formation of biohybrid structures by implementing cysteine anchoring points at defined positions on the protein rim (Hcp1_cys3). We successfully apply the Hcp1_cys3 gluing unit for the assembly of often linear, hybrid structures of plasmonic gold (Au NP), magnetite (Fe3O4 NP), and cobalt ferrite nanoparticles (CoFe2O4 NP). Furthermore, the assembly of Au NPs into linear structures using Hcp1_cys3 is investigated by UV-vis spectroscopy, TEM and cryo-TEM. One key parameter for the formation of Au NP assembly is the specific ionic strength in the mixture. The resulting network-like structure of Au NPs is characterized by Raman spectroscopy, showing surface-enhanced Raman scattering (SERS) by a factor of 8·10(4) and a stable secondary structure of the Hcp1_cys3 unit. In order to prove the catalytic performance of the gold hybrid structures, they are used as a catalyst in the reduction reaction of 4-nitrophenol showing similar catalytic activity as the pure Au NPs. To further extend the functionality of the Hcp1_cys3 gluing unit, Fe3O4 and CoFe2O4 NPs are aligned in a magnetic field and connected by utilization of cysteine-modified Hcp1. After lyophilization, a fiber-like material of micrometer scale length can be observed. The Fe3O4 Hcp1_cys3 fibers show superparamagnetic behavior with a decreasing blocking temperature and an increasing remanent magnetization leading to a higher squareness value of the hysteresis curve. Thus the Hcp1_cys3 unit is shown to be very versatile in the formation of new biohybrid materials with enhanced magnetic, catalytic and optical properties.
包含聚合物、肽、DNA和蛋白质等有机构建单元的杂化纳米颗粒(NP)结构在生物传感器和电子应用中具有巨大潜力。聚合物链几乎可自由修饰、蛋白质和DNA序列可变化以及功能基团的引入,为创建不同形态的无机结构提供了一个很好的平台,从而产生不同的光学和磁性特性。然而,设计和修饰具有用于组装生物杂化材料的官能团或序列的蛋白质结构并非易事。这主要是由于其二级、三级和四级结构对蛋白质亚基与无机材料之间相互作用(例如疏水、亲水、静电、化学基团)变化的敏感性。在此,我们使用铜绿假单胞菌的溶血素共调节蛋白1(Hcp1)作为构建和粘合单元,通过在蛋白质边缘的特定位置(Hcp1_cys3)引入半胱氨酸锚定点来形成生物杂化结构。我们成功地将Hcp1_cys3粘合单元应用于组装通常为线性的等离子体金(Au NP)、磁铁矿(Fe3O4 NP)和钴铁氧体纳米颗粒(CoFe2O4 NP)的杂化结构。此外,利用紫外可见光谱、透射电子显微镜(TEM)和低温透射电子显微镜研究了使用Hcp1_cys3将金纳米颗粒组装成线性结构的过程。金纳米颗粒组装形成的一个关键参数是混合物中的特定离子强度。所得的金纳米颗粒网络状结构通过拉曼光谱进行表征,显示出表面增强拉曼散射(SERS)增强了8·10(4)倍,并且Hcp1_cys3单元具有稳定的二级结构。为了证明金杂化结构的催化性能,将它们用作4-硝基苯酚还原反应的催化剂,显示出与纯金纳米颗粒相似的催化活性。为了进一步扩展Hcp1_cys3粘合单元的功能,将Fe3O4和CoFe2O4纳米颗粒在磁场中排列,并利用半胱氨酸修饰的Hcp1进行连接。冻干后,可以观察到微米级长度的纤维状材料。Fe3O4 Hcp1_cys3纤维表现出超顺磁性行为,其阻塞温度降低,剩余磁化强度增加,导致磁滞曲线的矩形度值更高。因此,Hcp1_cys3单元在形成具有增强磁性、催化和光学性质的新型生物杂化材料方面显示出非常通用的特性。