Subramanian Nandhitha, Scopelitti Amanda J, Carland Jane E, Ryan Renae M, O'Mara Megan L, Vandenberg Robert J
Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia.
Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
PLoS One. 2016 Jun 23;11(6):e0157583. doi: 10.1371/journal.pone.0157583. eCollection 2016.
The Na+/Cl- dependent glycine transporters GlyT1 and GlyT2 regulate synaptic glycine concentrations. Glycine transport by GlyT2 is coupled to the co-transport of three Na+ ions, whereas transport by GlyT1 is coupled to the co-transport of only two Na+ ions. These differences in ion-flux coupling determine their respective concentrating capacities and have a direct bearing on their functional roles in synaptic transmission. The crystal structures of the closely related bacterial Na+-dependent leucine transporter, LeuTAa, and the Drosophila dopamine transporter, dDAT, have allowed prediction of two Na+ binding sites in GlyT2, but the physical location of the third Na+ site in GlyT2 is unknown. A bacterial betaine transporter, BetP, has also been crystallized and shows structural similarity to LeuTAa. Although betaine transport by BetP is coupled to the co-transport of two Na+ ions, the first Na+ site is not conserved between BetP and LeuTAa, the so called Na1' site. We hypothesized that the third Na+ binding site (Na3 site) of GlyT2 corresponds to the BetP Na1' binding site. To identify the Na3 binding site of GlyT2, we performed molecular dynamics (MD) simulations. Surprisingly, a Na+ placed at the location consistent with the Na1' site of BetP spontaneously dissociated from its initial location and bound instead to a novel Na3 site. Using a combination of MD simulations of a comparative model of GlyT2 together with an analysis of the functional properties of wild type and mutant GlyTs we have identified an electrostatically favorable novel third Na+ binding site in GlyT2 formed by Trp263 and Met276 in TM3, Ala481 in TM6 and Glu648 in TM10.
依赖于Na⁺/Cl⁻的甘氨酸转运体GlyT1和GlyT2调节突触甘氨酸浓度。GlyT2介导的甘氨酸转运与3个Na⁺离子的共转运偶联,而GlyT1介导的转运仅与2个Na⁺离子的共转运偶联。离子通量偶联的这些差异决定了它们各自的浓缩能力,并直接影响它们在突触传递中的功能作用。密切相关的细菌依赖Na⁺的亮氨酸转运体LeuTAa和果蝇多巴胺转运体dDAT的晶体结构已使人们能够预测GlyT2中有两个Na⁺结合位点,但GlyT2中第三个Na⁺位点的物理位置尚不清楚。一种细菌甜菜碱转运体BetP也已结晶,并显示出与LeuTAa的结构相似性。虽然BetP介导的甜菜碱转运与2个Na⁺离子的共转运偶联,但第一个Na⁺位点在BetP和LeuTAa之间并不保守,即所谓的Na1'位点。我们推测GlyT2的第三个Na⁺结合位点(Na3位点)对应于BetP的Na1'结合位点。为了确定GlyT2的Na3结合位点,我们进行了分子动力学(MD)模拟。令人惊讶的是,置于与BetP的Na1'位点一致位置的一个Na⁺自发地从其初始位置解离,转而结合到一个新的Na3位点。通过结合GlyT2比较模型的MD模拟以及对野生型和突变型GlyT功能特性的分析,我们在GlyT2中确定了一个由跨膜区3(TM3)中的色氨酸263和甲硫氨酸276、跨膜区6(TM6)中的丙氨酸481以及跨膜区10(TM10)中的谷氨酸648形成的具有静电优势的新的第三个Na⁺结合位点。