Institute for Experimental Physics, University of Innsbruck, 6020 Innsbruck, Austria.
Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria.
Nature. 2016 Jun 23;534(7608):516-9. doi: 10.1038/nature18318.
Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman's idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments-the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.
规范理论是我们理解基本物质成分之间相互作用的基础,这些相互作用是通过规范玻色子介导的。然而,对于经典计算方法来说,计算规范理论中的实时动力学是一个众所周知的挑战。这最近激发了理论上的努力,利用费曼的量子模拟器的想法,设计在工程量子力学设备上模拟这些理论的方案,其困难在于需要实现规范不变性和相关的局部守恒定律(高斯定律)。在这里,我们通过在几个囚禁离子量子计算机上实现(1 + 1)维量子电动力学(施温格模型),实验证明了晶格规范理论的数字量子模拟。我们对施温格机制的实时演化感兴趣,该机制描述了由于量子涨落导致的裸真空的不稳定性,这表现为电子-正电子对的自发产生。为了有效地利用我们的量子资源,我们通过消除规范场来映射原始问题到一个自旋模型,以支持奇异的长程相互作用,这些相互作用可以直接且有效地在离子阱结构上实现。我们通过监测大量产生和真空持续振幅来探索粒子-反粒子生成的施温格机制。此外,我们跟踪系统中纠缠的实时演化,这说明了粒子生成和纠缠生成是如何直接相关的。我们的工作代表了使用原子物理实验进行高能理论量子模拟的第一步——长期目标是将这种方法扩展到非阿贝尔晶格规范理论的实时量子模拟。