Liu Yangting
School of Physics, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, 710049, Shaanxi, P. R. China.
Sci Rep. 2025 Jan 30;15(1):3828. doi: 10.1038/s41598-024-73456-y.
Deep reinforcement learning is considered an effective technology in quantum optimization and can provide strategies for optimal control of complex quantum systems. More precise measurements require simulation control at multiple experimental stages. Based on this, we improved a multi-objective deep reinforcement learning method in mathematical convex optimization theory for multi-process quantum optimal control optimization. By setting the single-process quantum control optimization result as a multi-objective optimization truncation threshold and reward function transfer strategy, we finally gave a global optimal solution that considers multiple influencing factors, rather than a local optimal solution that only targets a certain error. This method achieved excellent computational results on superconducting qubits. Optimum control of multi-process quantum computing can be achieved only by regulating the microwave pulse parameters of superconducting qubits, and such a set of global parameter values and control strategies are given.
深度强化学习被认为是量子优化中的一种有效技术,能够为复杂量子系统的最优控制提供策略。更精确的测量需要在多个实验阶段进行模拟控制。基于此,我们在数学凸优化理论中改进了一种多目标深度强化学习方法,用于多进程量子最优控制优化。通过将单进程量子控制优化结果设置为多目标优化截断阈值和奖励函数转移策略,我们最终给出了一个考虑多个影响因素的全局最优解,而不是仅针对某一误差的局部最优解。该方法在超导量子比特上取得了优异的计算结果。仅通过调节超导量子比特的微波脉冲参数,就能实现多进程量子计算的最优控制,并给出了这样一组全局参数值和控制策略。