Suppr超能文献

钙离子的特殊作用和β-乳球蛋白界面层的分子结构驱动宏观泡沫稳定性。

Specific effects of Ca(2+) ions and molecular structure of β-lactoglobulin interfacial layers that drive macroscopic foam stability.

机构信息

Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.

Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.

出版信息

Soft Matter. 2016 Jul 6;12(27):5995-6004. doi: 10.1039/c6sm00636a.

Abstract

β-Lactoglobulin (BLG) adsorption layers at air-water interfaces were studied in situ with vibrational sum-frequency generation (SFG), tensiometry, surface dilatational rheology and ellipsometry as a function of bulk Ca(2+) concentration. The relation between the interfacial molecular structure of adsorbed BLG and the interactions with the supporting electrolyte is additionally addressed on higher length scales along the foam hierarchy - from the ubiquitous air-water interface through thin foam films to macroscopic foam. For concentrations <1 mM, a strong decrease in SFG intensity from O-H stretching bands and a slight increase in layer thickness and surface pressure are observed. A further increase in Ca(2+) concentrations above 1 mM causes an apparent change in the polarity of aromatic C-H stretching vibrations from interfacial BLG which we associate to a charge reversal at the interface. Foam film measurements show formation of common black films at Ca(2+) concentrations above 1 mM due to considerable decrease of the stabilizing electrostatic disjoining pressure. These observations also correlate with a minimum in macroscopic foam stability. For concentrations >30 mM Ca(2+), micrographs of foam films show clear signatures of aggregates which tend to increase the stability of foam films. Here, the interfacial layers have a higher surface dilatational elasticity. In fact, macroscopic foams formed from BLG dilutions with high Ca(2+) concentrations where aggregates and interfacial layers with higher elasticity are found, showed the highest stability with much smaller bubble sizes.

摘要

β-乳球蛋白 (BLG) 在气-水界面的吸附层作为本体钙离子浓度的函数,通过振动和频产生 (SFG)、张力计、表面膨胀流变学和椭圆偏振法进行了原位研究。此外,在泡沫层次结构的更高长度尺度上,还探讨了吸附 BLG 的界面分子结构与支撑电解质相互作用之间的关系——从普遍存在的气-水界面到薄的泡沫膜再到宏观泡沫。对于浓度 <1 mM,观察到 O-H 伸缩带的 SFG 强度强烈下降,层厚度和表面压力略有增加。当 Ca(2+)浓度进一步增加到 1 mM 以上时,界面 BLG 的芳族 C-H 伸缩振动的极性发生明显变化,我们将其归因于界面上的电荷反转。泡沫膜测量表明,由于稳定的静电排斥压力大大降低,在 Ca(2+)浓度高于 1 mM 时会形成常见的黑色薄膜。这些观察结果还与宏观泡沫稳定性的最小值相关。对于浓度 >30 mM Ca(2+),泡沫膜的显微照片显示出明显的聚集物特征,这倾向于增加泡沫膜的稳定性。在这里,界面层具有更高的表面膨胀弹性。实际上,从具有高 Ca(2+)浓度的 BLG 稀释液形成的宏观泡沫,其中发现了聚集物和具有更高弹性的界面层,表现出最高的稳定性,气泡尺寸小得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fb4/5048339/efbb451fc8a4/c6sm00636a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验