Suppr超能文献

存在验证偏倚时ROC曲线下面积的逆概率加权估计

Inverse probability weighting estimation of the volume under the ROC surface in the presence of verification bias.

作者信息

Zhang Ying, Alonzo Todd A

机构信息

Department of Biostatistics, University of Southern California, Keck School of Medicine, Los Angeles, California 90033, USA.

出版信息

Biom J. 2016 Nov;58(6):1338-1356. doi: 10.1002/bimj.201500225. Epub 2016 Jun 24.

Abstract

In diagnostic medicine, the volume under the receiver operating characteristic (ROC) surface (VUS) is a commonly used index to quantify the ability of a continuous diagnostic test to discriminate between three disease states. In practice, verification of the true disease status may be performed only for a subset of subjects under study since the verification procedure is invasive, risky, or expensive. The selection for disease examination might depend on the results of the diagnostic test and other clinical characteristics of the patients, which in turn can cause bias in estimates of the VUS. This bias is referred to as verification bias. Existing verification bias correction in three-way ROC analysis focuses on ordinal tests. We propose verification bias-correction methods to construct ROC surface and estimate the VUS for a continuous diagnostic test, based on inverse probability weighting. By applying U-statistics theory, we develop asymptotic properties for the estimator. A Jackknife estimator of variance is also derived. Extensive simulation studies are performed to evaluate the performance of the new estimators in terms of bias correction and variance. The proposed methods are used to assess the ability of a biomarker to accurately identify stages of Alzheimer's disease.

摘要

在诊断医学中,接收者操作特征(ROC)曲面下的体积(VUS)是一种常用指标,用于量化连续诊断测试区分三种疾病状态的能力。在实际操作中,由于验证程序具有侵入性、风险性或成本高昂,可能仅对研究对象的一个子集进行真正疾病状态的验证。疾病检查的选择可能取决于诊断测试的结果以及患者的其他临床特征,这反过来又可能导致VUS估计产生偏差。这种偏差被称为验证偏差。现有的三分类ROC分析中的验证偏差校正主要集中在有序检验上。我们提出了基于逆概率加权的验证偏差校正方法,用于构建连续诊断测试的ROC曲面并估计VUS。通过应用U统计量理论,我们推导了估计量的渐近性质。还导出了方差的刀切估计量。进行了广泛的模拟研究,以评估新估计量在偏差校正和方差方面的性能。所提出的方法用于评估生物标志物准确识别阿尔茨海默病阶段的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验