Suppr超能文献

利用存在验证偏倚的数据直接估计受试者工作特征曲线下面积

Direct estimation of the area under the receiver operating characteristic curve with verification biased data.

作者信息

Hai Yan, Qin Gengsheng

机构信息

Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, USA.

出版信息

Stat Med. 2020 Dec 30;39(30):4789-4820. doi: 10.1002/sim.8753. Epub 2020 Sep 17.

Abstract

In medical diagnostic studies, verification of the true disease status might be partially missing based on results of diagnostic tests and other characteristics of subjects. Because estimates of area under the ROC curve (AUC) based on partially validated subjects are usually biased, it is usually necessary to estimate AUC from a bias-corrected ROC curve. In this article, various direct estimation methods of the AUC based on hybrid imputation [full imputations and mean score imputation (MSI)], inverse probability weighting, and the semiparametric efficient (SPE) approach are proposed and compared in the presence of verification bias when the test result is continuous under the assumption that the true disease status, if missing, is missing at random. Simulation results show that the proposed estimators are accurate for the biased sampling if the disease and verification models are correctly specified. The SPE and MSI based estimators perform well even under the misspecified disease/verification models. Numerical studies are performed to compare the finite sample performance of the proposed approaches with existing methods. A real dataset of neonatal hearing screening study is analyzed.

摘要

在医学诊断研究中,基于诊断测试结果和受试者的其他特征,真实疾病状态的验证可能会部分缺失。由于基于部分验证受试者的ROC曲线下面积(AUC)估计通常存在偏差,通常需要从偏差校正的ROC曲线估计AUC。在本文中,当测试结果为连续变量且假定真实疾病状态(若缺失)为随机缺失时,在存在验证偏差的情况下,提出并比较了基于混合插补(完全插补和均值得分插补(MSI))、逆概率加权和半参数有效(SPE)方法的AUC各种直接估计方法。模拟结果表明,如果疾病和验证模型正确设定,所提出的估计量对于有偏抽样是准确的。即使在疾病/验证模型设定错误的情况下,基于SPE和MSI的估计量也表现良好。进行了数值研究以比较所提出方法与现有方法的有限样本性能。分析了新生儿听力筛查研究的一个真实数据集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验