Liu Danping, Zhou Xiao-Hua
Department of Biostatistics, University of Washington, Seattle, Washington 98195, USA.
Biometrics. 2011 Sep;67(3):906-16. doi: 10.1111/j.1541-0420.2011.01562.x. Epub 2011 Mar 1.
Covariate-specific receiver operating characteristic (ROC) curves are often used to evaluate the classification accuracy of a medical diagnostic test or a biomarker, when the accuracy of the test is associated with certain covariates. In many large-scale screening tests, the gold standard is subject to missingness due to high cost or harmfulness to the patient. In this article, we propose a semiparametric estimation of the covariate-specific ROC curves with a partial missing gold standard. A location-scale model is constructed for the test result to model the covariates' effect, but the residual distributions are left unspecified. Thus the baseline and link functions of the ROC curve both have flexible shapes. With the gold standard missing at random (MAR) assumption, we consider weighted estimating equations for the location-scale parameters, and weighted kernel estimating equations for the residual distributions. Three ROC curve estimators are proposed and compared, namely, imputation-based, inverse probability weighted, and doubly robust estimators. We derive the asymptotic normality of the estimated ROC curve, as well as the analytical form of the standard error estimator. The proposed method is motivated and applied to the data in an Alzheimer's disease research.
当医学诊断测试或生物标志物的准确性与某些协变量相关时,特定协变量的接受者操作特征(ROC)曲线常被用于评估其分类准确性。在许多大规模筛查测试中,由于成本高昂或对患者有害,金标准存在缺失情况。在本文中,我们提出了一种在部分金标准缺失的情况下对特定协变量ROC曲线进行半参数估计的方法。为测试结果构建了一个位置 - 尺度模型来模拟协变量的效应,但残差分布未作具体设定。因此,ROC曲线的基线函数和连接函数都具有灵活的形状。在金标准随机缺失(MAR)假设下,我们考虑位置 - 尺度参数的加权估计方程以及残差分布的加权核估计方程。提出并比较了三种ROC曲线估计器,即基于插补的估计器、逆概率加权估计器和双重稳健估计器。我们推导了估计的ROC曲线的渐近正态性以及标准误差估计器的解析形式。所提出的方法在阿尔茨海默病研究数据中得到了应用。