Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA.
Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
Acta Neuropathol Commun. 2016 Jun 23;4(1):62. doi: 10.1186/s40478-016-0333-4.
Common neurodegenerative proteinopathies, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by the misfolding and aggregation of toxic protein species, including the amyloid beta (Aß) peptide, microtubule-associated protein Tau (Tau), and alpha-synuclein (αSyn) protein. These factors also show toxicity in Drosophila; however, potential limitations of prior studies include poor discrimination between effects on the adult versus developing nervous system and neuronal versus glial cell types. In addition, variable expression paradigms and outcomes hinder systematic comparison of toxicity profiles. Using standardized conditions and medium-throughput assays, we express human Tau, Aß or αSyn selectively in neurons of the adult Drosophila retina and monitor age-dependent changes in both structure and function, based on tissue histology and recordings of the electroretinogram (ERG), respectively. We find that each protein causes a unique profile of neurodegenerative pathology, demonstrating distinct and separable impacts on neuronal death and dysfunction. Strikingly, expression of Tau leads to progressive loss of ERG responses whereas retinal architecture and neuronal numbers are largely preserved. By contrast, Aß induces modest, age-dependent neuronal loss without degrading the retinal ERG. αSyn expression, using a codon-optimized transgene, is characterized by marked retinal vacuolar change, progressive photoreceptor cell death, and delayed-onset but modest ERG changes. Lastly, to address potential mechanisms, we perform transmission electron microscopy (TEM) to reveal potential degenerative changes at the ultrastructural level. Surprisingly, Tau and αSyn each cause prominent but distinct synaptotoxic profiles, including disorganization or enlargement of photoreceptor terminals, respectively. Our findings highlight variable and dynamic properties of neurodegeneration triggered by these disease-relevant proteins in vivo, and suggest that Drosophila may be useful for revealing determinants of neuronal dysfunction that precede cell loss, including synaptic changes, in the adult nervous system.
常见的神经退行性蛋白病,如阿尔茨海默病(AD)和帕金森病(PD),其特征是有毒蛋白的错误折叠和聚集,包括淀粉样β(Aβ)肽、微管相关蛋白 Tau(Tau)和α-突触核蛋白(αSyn)。这些因素在果蝇中也表现出毒性;然而,以前研究的潜在局限性包括对成年与发育中的神经系统以及神经元与神经胶质细胞类型的影响之间的区分较差。此外,可变的表达模式和结果阻碍了毒性谱的系统比较。使用标准化条件和高通量测定法,我们选择性地在成年果蝇视网膜神经元中表达人 Tau、Aβ或αSyn,并分别基于组织组织学和视网膜电图(ERG)的记录,监测结构和功能随年龄的变化。我们发现每种蛋白质都会导致独特的神经退行性病变谱,证明对神经元死亡和功能障碍有明显和可分离的影响。引人注目的是,Tau 的表达导致 ERG 反应逐渐丧失,而视网膜结构和神经元数量基本保持不变。相比之下,Aβ 诱导适度的、随年龄增长的神经元丧失,而不会使视网膜 ERG 降级。使用密码子优化的转基因,αSyn 的表达表现出明显的视网膜空泡变化、进行性光感受器细胞死亡以及延迟发作但适度的 ERG 变化。最后,为了解决潜在的机制问题,我们进行了透射电子显微镜(TEM)检查,以揭示潜在的超微结构退行性变化。令人惊讶的是,Tau 和αSyn 各自导致明显但不同的突触毒性谱,包括光感受器末梢的组织紊乱或扩大。我们的研究结果强调了这些与疾病相关的蛋白质在体内引发的神经退行性变的可变和动态特性,并表明果蝇可能有助于揭示在成年神经系统中导致细胞丢失之前的神经元功能障碍的决定因素,包括突触变化。