Seguin A, Lefebvre-Lepot A, Faure S, Gondret P
Laboratoire FAST, Université Paris-Sud, CNRS, Université Paris-Saclay, F-91405, Orsay, France.
SPEC, CEA, CNRS, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France.
Eur Phys J E Soft Matter. 2016 Jun;39(6):63. doi: 10.1140/epje/i2016-16063-0. Epub 2016 Jun 24.
A bidimensional simulation of a sphere moving at constant velocity into a cloud of smaller spherical grains far from any boundaries and without gravity is presented with a non-smooth contact dynamics method. A dense granular "cluster" zone builds progressively around the moving sphere until a stationary regime appears with a constant upstream cluster size. The key point is that the upstream cluster size increases with the initial solid fraction [Formula: see text] but the cluster packing fraction takes an about constant value independent of [Formula: see text]. Although the upstream cluster size around the moving sphere diverges when [Formula: see text] approaches a critical value, the drag force exerted by the grains on the sphere does not. The detailed analysis of the local strain rate and local stress fields made in the non-parallel granular flow inside the cluster allows us to extract the local invariants of the two tensors: dilation rate, shear rate, pressure and shear stress. Despite different spatial variations of these invariants, the local friction coefficient μ appears to depend only on the local inertial number I as well as the local solid fraction, which means that a local rheology does exist in the present non-parallel flow. The key point is that the spatial variations of I inside the cluster do not depend on the sphere velocity and explore only a small range around the value one.
采用非光滑接触动力学方法,对一个在远离任何边界且无重力的小颗粒球云中以恒定速度运动的球体进行二维模拟。一个密集的颗粒“簇”区域在运动球体周围逐渐形成,直到出现一个具有恒定上游簇尺寸的稳定状态。关键在于,上游簇尺寸随初始固体分数[公式:见原文]增加,但簇的堆积分数取一个与[公式:见原文]无关的近似恒定值。尽管当[公式:见原文]接近临界值时,运动球体周围的上游簇尺寸发散,但颗粒对球体施加的阻力并非如此。对簇内非平行颗粒流中局部应变率和局部应力场的详细分析,使我们能够提取两个张量的局部不变量:膨胀率、剪切率、压力和剪应力。尽管这些不变量存在不同的空间变化,但局部摩擦系数μ似乎仅取决于局部惯性数I以及局部固体分数,这意味着在当前的非平行流中确实存在局部流变学。关键在于,簇内I的空间变化不取决于球体速度,仅在值1附近的小范围内变化。