Suppr超能文献

剪切致栓。

Jamming by shear.

机构信息

Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.

出版信息

Nature. 2011 Dec 14;480(7377):355-8. doi: 10.1038/nature10667.

Abstract

A broad class of disordered materials including foams, glassy molecular systems, colloids and granular materials can form jammed states. A jammed system can resist small stresses without deforming irreversibly, whereas unjammed systems flow under any applied stresses. The broad applicability of the Liu-Nagel jamming concept has attracted intensive theoretical and modelling interest but has prompted less experimental effort. In the Liu-Nagel framework, jammed states of athermal systems exist only above a certain critical density. Although numerical simulations for particles that do not experience friction broadly support this idea, the nature of the jamming transition for frictional grains is less clear. Here we show that jamming of frictional, disk-shaped grains can be induced by the application of shear stress at densities lower than the critical value, at which isotropic (shear-free) jamming occurs. These jammed states have a much richer phenomenology than the isotropic jammed states: for small applied shear stresses, the states are fragile, with a strong force network that percolates only in one direction. A minimum shear stress is needed to create robust, shear-jammed states with a strong force network percolating in all directions. The transitions from unjammed to fragile states and from fragile to shear-jammed states are controlled by the fraction of force-bearing grains. The fractions at which these transitions occur are statistically independent of the density. Jammed states with densities lower than the critical value have an anisotropic fabric (contact network). The minimum anisotropy of shear-jammed states vanishes as the density approaches the critical value from below, in a manner reminiscent of an order-disorder transition.

摘要

广泛的无序材料包括泡沫、玻璃状分子系统、胶体和颗粒材料,可以形成被堵塞的状态。被堵塞的系统可以抵抗小的压力而不会发生不可逆转的变形,而未被堵塞的系统则会在任何施加的压力下流动。Liu-Nagel 堵塞概念的广泛适用性引起了人们对理论和模型的浓厚兴趣,但实验研究相对较少。在 Liu-Nagel 框架中,无定形系统的堵塞状态仅存在于一定的临界密度以上。虽然不考虑摩擦力的粒子的数值模拟广泛支持这个想法,但摩擦力颗粒的堵塞转变的性质不太清楚。在这里,我们表明,通过在低于发生各向同性(无剪切)堵塞的临界值的密度下施加剪切应力,可以诱导摩擦盘状颗粒的堵塞。这些堵塞状态具有比各向同性堵塞状态更丰富的现象学:对于小的施加剪切应力,状态是脆弱的,具有仅在一个方向上渗透的强力网络。需要最小剪切应力才能创建具有在所有方向上渗透的强力网络的稳健剪切堵塞状态。从不堵塞状态到脆弱状态以及从脆弱状态到剪切堵塞状态的转变由承载力颗粒的分数控制。这些转变发生的分数与密度无关。低于临界值的密度的堵塞状态具有各向异性的结构(接触网络)。当密度从低于临界值接近临界值时,剪切堵塞状态的最小各向异性以类似于有序-无序转变的方式消失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验