State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
Nanoscale. 2016 Jul 14;8(28):13581-8. doi: 10.1039/c6nr03229j.
We describe a facile and controllable asymmetrical/symmetrical coating strategy for the preparation of various novel periodic mesoporous organosilica (PMO) nanostructures, including Au&PMO Janus, Au@PMO yolk-shell and Au@PMO/mSiO2 yolk-double shell nanoparticles, by using Au@SiO2 nanoparticles as seeds. During this process, ammonia first functions as a basic catalyst facilitating the hydrolyzation and condensation of the organosilica precursor, and additionally as an etching agent selectively in situ dissolving the SiO2 shells of Au@SiO2 nanoparticles to form these unique nanostructures. All these three types of nanoparticles have high surface areas, large pore volumes and tailorable cavity structures. Both the Au&PMO and Au@PMO nanoparticles exhibit excellent catalytic activity for the decomposition of H2O2 and the reduction of 4-nitrophenol. Based on these unique structural merits and organic-inorganic hybrid components, the fabricated Janus and hollow PMO nanoparticles show much improved hemocompatibility, which could be further applied in nano-biomedicines without the need for surface modification.
我们描述了一种简便且可控的非对称/对称涂层策略,用于制备各种新型的周期性介孔有机硅(PMO)纳米结构,包括 Au&PMO 双节、Au@PMO 蛋黄壳和 Au@PMO/mSiO2 蛋黄-双壳纳米粒子,使用 Au@SiO2 纳米粒子作为种子。在这个过程中,氨首先作为碱性催化剂促进有机硅前体的水解和缩合,此外还作为蚀刻剂选择性地原位溶解 Au@SiO2 纳米粒子的 SiO2 壳,形成这些独特的纳米结构。所有这三种类型的纳米粒子都具有高比表面积、大孔体积和可调节的空腔结构。Au&PMO 和 Au@PMO 纳米粒子都表现出对 H2O2 分解和 4-硝基苯酚还原的优异催化活性。基于这些独特的结构优点和有机-无机杂化成分,所制备的 Janus 和空心 PMO 纳米粒子显示出明显改善的血液相容性,可进一步应用于纳米生物医学而无需表面改性。