文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

介孔硅纳米粒子的纳米结构原型用于创新的生物医学应用。

Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications.

机构信息

Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China.

College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China.

出版信息

J Nanobiotechnology. 2022 Mar 12;20(1):126. doi: 10.1186/s12951-022-01315-x.


DOI:10.1186/s12951-022-01315-x
PMID:35279150
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8917689/
Abstract

Despite exceptional morphological and physicochemical attributes, mesoporous silica nanoparticles (MSNs) are often employed as carriers or vectors. Moreover, these conventional MSNs often suffer from various limitations in biomedicine, such as reduced drug encapsulation efficacy, deprived compatibility, and poor degradability, resulting in poor therapeutic outcomes. To address these limitations, several modifications have been corroborated to fabricating hierarchically-engineered MSNs in terms of tuning the pore sizes, modifying the surfaces, and engineering of siliceous networks. Interestingly, the further advancements of engineered MSNs lead to the generation of highly complex and nature-mimicking structures, such as Janus-type, multi-podal, and flower-like architectures, as well as streamlined tadpole-like nanomotors. In this review, we present explicit discussions relevant to these advanced hierarchical architectures in different fields of biomedicine, including drug delivery, bioimaging, tissue engineering, and miscellaneous applications, such as photoluminescence, artificial enzymes, peptide enrichment, DNA detection, and biosensing, among others. Initially, we give a brief overview of diverse, innovative stimuli-responsive (pH, light, ultrasound, and thermos)- and targeted drug delivery strategies, along with discussions on recent advancements in cancer immune therapy and applicability of advanced MSNs in other ailments related to cardiac, vascular, and nervous systems, as well as diabetes. Then, we provide initiatives taken so far in clinical translation of various silica-based materials and their scope towards clinical translation. Finally, we summarize the review with interesting perspectives on lessons learned in exploring the biomedical applications of advanced MSNs and further requirements to be explored.

摘要

尽管介孔硅纳米粒子(MSNs)具有出色的形态和物理化学属性,但它们通常被用作载体或载体。此外,这些传统的 MSNs 在生物医学中经常存在各种限制,例如药物包封效率降低、相容性差和降解性差,导致治疗效果不佳。为了解决这些限制,已经证实了几种改性方法来制造具有分级结构的 MSNs,例如调节孔径、修饰表面和硅质网络工程。有趣的是,经过工程设计的 MSNs 的进一步发展导致产生了高度复杂和模仿自然的结构,例如 Janus 型、多足型和花型结构,以及流线型的蝌蚪状纳米马达。在这篇综述中,我们将详细讨论这些在生物医学不同领域的先进分级结构,包括药物输送、生物成像、组织工程以及其他应用,如光致发光、人工酶、肽富集、DNA 检测和生物传感等。首先,我们简要概述了各种创新的刺激响应(pH、光、超声和温度)和靶向药物输送策略,并讨论了癌症免疫治疗的最新进展以及先进 MSNs 在与心脏、血管和神经系统以及糖尿病相关的其他疾病中的应用。然后,我们介绍了目前在各种基于硅的材料的临床转化方面所采取的措施及其向临床转化的范围。最后,我们总结了这篇综述,探讨了在探索先进 MSNs 的生物医学应用方面的经验教训以及进一步需要探索的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/f8a55b27cbeb/12951_2022_1315_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/c545b4707f30/12951_2022_1315_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/421aed2f041e/12951_2022_1315_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/8ade9194b023/12951_2022_1315_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/7d7f0bdbf1a4/12951_2022_1315_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/3ecafbacbd8b/12951_2022_1315_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/15919a8f0b9d/12951_2022_1315_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/a13c9e306d60/12951_2022_1315_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/ce9ceba15e80/12951_2022_1315_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/72fefef5fe67/12951_2022_1315_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/87c9ad233dc9/12951_2022_1315_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/e46d18ee3c48/12951_2022_1315_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/a487249ca03b/12951_2022_1315_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/022ceaee4234/12951_2022_1315_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/f8a55b27cbeb/12951_2022_1315_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/c545b4707f30/12951_2022_1315_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/421aed2f041e/12951_2022_1315_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/8ade9194b023/12951_2022_1315_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/7d7f0bdbf1a4/12951_2022_1315_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/3ecafbacbd8b/12951_2022_1315_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/15919a8f0b9d/12951_2022_1315_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/a13c9e306d60/12951_2022_1315_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/ce9ceba15e80/12951_2022_1315_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/72fefef5fe67/12951_2022_1315_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/87c9ad233dc9/12951_2022_1315_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/e46d18ee3c48/12951_2022_1315_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/a487249ca03b/12951_2022_1315_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/022ceaee4234/12951_2022_1315_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd7/8917689/f8a55b27cbeb/12951_2022_1315_Fig14_HTML.jpg

相似文献

[1]
Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications.

J Nanobiotechnology. 2022-3-12

[2]
Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles.

Adv Mater. 2020-6

[3]
Mesoporous silica nanoparticles for therapeutic/diagnostic applications.

Biomed Pharmacother. 2018-11-6

[4]
Multifunctional mesoporous silica nanoparticles for biomedical applications.

Signal Transduct Target Ther. 2023-11-24

[5]
Biosafety of mesoporous silica nanoparticles; towards clinical translation.

Adv Drug Deliv Rev. 2023-10

[6]
In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles.

Adv Mater. 2013-5-17

[7]
Mesoporous silica nanoparticles for tissue-engineering applications.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019-7-11

[8]
Mesoporous silica nanoparticles in drug delivery and biomedical applications.

Nanomedicine. 2014-11-13

[9]
Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery.

Adv Mater. 2012-2-29

[10]
Mesoporous Silica Nanoparticles as a Potential Nanoplatform: Therapeutic Applications and Considerations.

Int J Mol Sci. 2023-3-28

引用本文的文献

[1]
Formation of Hybrid Spherical Silica Particles Using a Novel Alkoxy-Functional Polysilsesquioxane Macromonomer as a Precursor in an Acid-Catalyzed Sol-Gel Process.

Materials (Basel). 2025-7-17

[2]
Nanoarchitecting intelligently encapsulated designs for improved cancer therapy.

Front Bioeng Biotechnol. 2025-5-1

[3]
Cardiac Cell Membrane-Coated Nanoparticles as a Potential Targeted Delivery System for Cardiac Therapy.

Biomimetics (Basel). 2025-2-25

[4]
Dual pH- and Temperature-Responsive Performance and Cytotoxicity of N-Isopropylacrylamide and Acrylic Acid Functionalized Bimodal Mesoporous Silicas with Core-Shell Structure and Fluorescent Feature for Hela Cell.

Pharmaceutics. 2025-2-6

[5]
Bacteria-tumor symbiosis destructible novel nanocatalysis drug delivery systems for effective tumor therapy.

Nanomedicine (Lond). 2025-2

[6]
Application of nanomedicines in tumor immunotherapy.

J Mol Cell Biol. 2025-6-12

[7]
Solubilization techniques used for poorly water-soluble drugs.

Acta Pharm Sin B. 2024-11

[8]
Nanoparticle targeting strategies for traumatic brain injury.

J Neural Eng. 2024-12-20

[9]
Hybrid Nanoparticles Based on Mesoporous Silica and Functionalized Biopolymers as Drug Carriers for Chemotherapeutic Agents.

Materials (Basel). 2024-8-5

[10]
Advances in hybridized nanoarchitectures for improved oro-dental health.

J Nanobiotechnology. 2024-8-7

本文引用的文献

[1]
A gold nanoparticle-intercalated mesoporous silica-based nanozyme for the selective colorimetric detection of dopamine.

Nanoscale Adv. 2019-12-19

[2]
Polysorbate-coated mesoporous silica nanoparticles as an efficient carrier for improved rivastigmine brain delivery.

Brain Res. 2022-4-15

[3]
Advanced ELISA-like Biosensing Based on Ultralarge-Pore Silica Microbeads.

ACS Appl Bio Mater. 2020-9-21

[4]
3D printing of alginate dialdehyde-gelatin (ADA-GEL) hydrogels incorporating phytotherapeutic icariin loaded mesoporous SiO-CaO nanoparticles for bone tissue engineering.

Mater Sci Eng C Mater Biol Appl. 2021-12

[5]
Sucrose-Responsive Intercommunicated Janus Nanoparticles Network.

Nanomaterials (Basel). 2021-9-24

[6]
Clinical translation of silica nanoparticles.

Nat Rev Mater. 2021

[7]
Near-infrared light-responsive hybrid hydrogels for the synergistic chemo-photothermal therapy of oral cancer.

Nanoscale. 2021-10-21

[8]
Interfacial Assembly and Applications of Functional Mesoporous Materials.

Chem Rev. 2021-12-8

[9]
MicroRNA-Triggered Deconstruction of Field-Free Spherical Nucleic Acid as an Electrochemiluminescence Biosensing Switch.

Anal Chem. 2021-10-19

[10]
Charge-reversal biodegradable MSNs for tumor synergetic chemo/photothermal and visualized therapy.

J Control Release. 2021-10-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索