Suppr超能文献

基于有序逻辑回归的瑞士天然源氡建模

Modeling of geogenic radon in Switzerland based on ordered logistic regression.

作者信息

Kropat Georg, Bochud François, Murith Christophe, Palacios Gruson Martha, Baechler Sébastien

机构信息

Institute of Radiation Physics, Lausanne University Hospital, Rue du Grand-Pré 1, 1007 Lausanne, Switzerland.

Institute of Radiation Physics, Lausanne University Hospital, Rue du Grand-Pré 1, 1007 Lausanne, Switzerland.

出版信息

J Environ Radioact. 2017 Jan;166(Pt 2):376-381. doi: 10.1016/j.jenvrad.2016.06.007. Epub 2016 Jun 22.

Abstract

PURPOSE

The estimation of the radon hazard of a future construction site should ideally be based on the geogenic radon potential (GRP), since this estimate is free of anthropogenic influences and building characteristics. The goal of this study was to evaluate terrestrial gamma dose rate (TGD), geology, fault lines and topsoil permeability as predictors for the creation of a GRP map based on logistic regression.

METHOD

Soil gas radon measurements (SRC) are more suited for the estimation of GRP than indoor radon measurements (IRC) since the former do not depend on ventilation and heating habits or building characteristics. However, SRC have only been measured at a few locations in Switzerland. In former studies a good correlation between spatial aggregates of IRC and SRC has been observed. That's why we used IRC measurements aggregated on a 10 km × 10 km grid to calibrate an ordered logistic regression model for geogenic radon potential (GRP). As predictors we took into account terrestrial gamma doserate, regrouped geological units, fault line density and the permeability of the soil.

RESULTS

The classification success rate of the model results to 56% in case of the inclusion of all 4 predictor variables. Our results suggest that terrestrial gamma doserate and regrouped geological units are more suited to model GRP than fault line density and soil permeability.

CONCLUSION

Ordered logistic regression is a promising tool for the modeling of GRP maps due to its simplicity and fast computation time. Future studies should account for additional variables to improve the modeling of high radon hazard in the Jura Mountains of Switzerland.

摘要

目的

对未来建筑工地的氡危害进行评估,理想情况下应基于地质成因氡潜能(GRP),因为这种评估不受人为影响和建筑特征的干扰。本研究的目的是评估地面伽马剂量率(TGD)、地质、断层线和表土渗透率,作为基于逻辑回归创建GRP地图的预测因子。

方法

土壤气体氡测量(SRC)比室内氡测量(IRC)更适合用于GRP的评估,因为前者不依赖于通风和供暖习惯或建筑特征。然而,SRC仅在瑞士的少数地点进行了测量。在以前的研究中,已观察到IRC和SRC的空间汇总数据之间具有良好的相关性。这就是为什么我们使用在10 km×10 km网格上汇总的IRC测量数据来校准地质成因氡潜能(GRP)的有序逻辑回归模型。作为预测因子,我们考虑了地面伽马剂量率、重新分组的地质单元、断层线密度和土壤渗透率。

结果

在纳入所有4个预测变量的情况下,模型结果的分类成功率为56%。我们的结果表明,与断层线密度和土壤渗透率相比,地面伽马剂量率和重新分组的地质单元更适合用于GRP建模。

结论

有序逻辑回归因其简单性和计算速度快,是一种很有前景的GRP地图建模工具。未来的研究应考虑其他变量,以改进瑞士汝拉山区高氡危害的建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验