Suppr超能文献

用于构建拉齐奥地区地源氡潜能图的地理加权回归和地质统计技术:欧洲自然辐射地图集的方法建议

Geographically weighted regression and geostatistical techniques to construct the geogenic radon potential map of the Lazio region: A methodological proposal for the European Atlas of Natural Radiation.

作者信息

Ciotoli G, Voltaggio M, Tuccimei P, Soligo M, Pasculli A, Beaubien S E, Bigi S

机构信息

Istituto di Geologia Ambientale e Geoingegneria, Consiglio Nazionale delle Ricerche - IGAG-CNR, Area della Ricerca di Roma1, Rome, Italy; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 2, Rome, Italy.

Istituto di Geologia Ambientale e Geoingegneria, Consiglio Nazionale delle Ricerche - IGAG-CNR, Area della Ricerca di Roma1, Rome, Italy.

出版信息

J Environ Radioact. 2017 Jan;166(Pt 2):355-375. doi: 10.1016/j.jenvrad.2016.05.010. Epub 2016 May 27.

Abstract

In many countries, assessment programmes are carried out to identify areas where people may be exposed to high radon levels. These programmes often involve detailed mapping, followed by spatial interpolation and extrapolation of the results based on the correlation of indoor radon values with other parameters (e.g., lithology, permeability and airborne total gamma radiation) to optimise the radon hazard maps at the municipal and/or regional scale. In the present work, Geographical Weighted Regression and geostatistics are used to estimate the Geogenic Radon Potential (GRP) of the Lazio Region, assuming that the radon risk only depends on the geological and environmental characteristics of the study area. A wide geodatabase has been organised including about 8000 samples of soil-gas radon, as well as other proxy variables, such as radium and uranium content of homogeneous geological units, rock permeability, and faults and topography often associated with radon production/migration in the shallow environment. All these data have been processed in a Geographic Information System (GIS) using geospatial analysis and geostatistics to produce base thematic maps in a 1000 m × 1000 m grid format. Global Ordinary Least Squared (OLS) regression and local Geographical Weighted Regression (GWR) have been applied and compared assuming that the relationships between radon activities and the environmental variables are not spatially stationary, but vary locally according to the GRP. The spatial regression model has been elaborated considering soil-gas radon concentrations as the response variable and developing proxy variables as predictors through the use of a training dataset. Then a validation procedure was used to predict soil-gas radon values using a test dataset. Finally, the predicted values were interpolated using the kriging algorithm to obtain the GRP map of the Lazio region. The map shows some high GRP areas corresponding to the volcanic terrains (central-northern sector of Lazio region) and to faulted and fractured carbonate rocks (central-southern and eastern sectors of the Lazio region). This typical local variability of autocorrelated phenomena can only be taken into account by using local methods for spatial data analysis. The constructed GRP map can be a useful tool to implement radon policies at both the national and local levels, providing critical data for land use and planning purposes.

摘要

在许多国家,都开展了评估项目,以确定人们可能接触到高氡水平的区域。这些项目通常包括详细的测绘,随后基于室内氡值与其他参数(如岩性、渗透率和空气中总伽马辐射)的相关性进行空间插值和结果外推,以优化市和/或区域尺度的氡危害地图。在本研究中,假设氡风险仅取决于研究区域的地质和环境特征,采用地理加权回归和地质统计学方法来估算拉齐奥地区的原生氡潜力(GRP)。已构建了一个广泛的地理数据库,其中包括约8000个土壤气体氡样本,以及其他替代变量,如均质地质单元的镭和铀含量、岩石渗透率,以及浅层环境中常与氡产生/运移相关的断层和地形。所有这些数据都在地理信息系统(GIS)中进行了处理,使用地理空间分析和地质统计学方法,以1000米×1000米的网格格式生成基础专题地图。假设氡活动与环境变量之间的关系在空间上并非固定不变,而是根据GRP在局部有所变化,应用并比较了全局普通最小二乘法(OLS)回归和局部地理加权回归(GWR)。以土壤气体氡浓度作为响应变量,通过使用训练数据集将替代变量作为预测变量,构建了空间回归模型。然后使用验证程序,利用测试数据集预测土壤气体氡值。最后,使用克里金算法对预测值进行插值,以获得拉齐奥地区的GRP地图。该地图显示了一些高GRP区域,对应于火山地形(拉齐奥地区中北部)以及断层和裂隙碳酸盐岩区域(拉齐奥地区中南部和东部)。只有使用局部空间数据分析方法,才能考虑到这种自相关现象典型的局部变异性。构建的GRP地图可以成为在国家和地方层面实施氡政策的有用工具,为土地利用和规划目的提供关键数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验