Suppr超能文献

轴突中钾离子通道簇集对动作电位持续时间的突触水平测定

Synapse-Level Determination of Action Potential Duration by K(+) Channel Clustering in Axons.

作者信息

Rowan Matthew J M, DelCanto Gina, Yu Jianqing J, Kamasawa Naomi, Christie Jason M

机构信息

Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.

Wilkes Honors Campus of Florida Atlantic University, Jupiter, FL 33405, USA.

出版信息

Neuron. 2016 Jul 20;91(2):370-83. doi: 10.1016/j.neuron.2016.05.035. Epub 2016 Jun 23.

Abstract

In axons, an action potential (AP) is thought to be broadcast as an unwavering binary pulse over its arbor, driving neurotransmission uniformly at release sites. Yet by recording from axons of cerebellar stellate cell (SC) interneurons, we show that AP width varies between presynaptic bouton sites, even within the same axon branch. The varicose geometry of SC boutons alone does not impose differences in spike duration. Rather, axonal patching revealed heterogeneous peak conductance densities of currents mediated mainly by fast-activating Kv3-type potassium channels, with clustered hotspots at boutons and restricted expression at adjoining shafts. Blockade of Kv channels at individual boutons indicates that currents immediately local to a release site direct spike repolarization at that location. Thus, the clustered arrangement and variable expression density of Kv3 channels at boutons are key determinants underlying compartmentalized control of AP width in a near synapse-by-synapse manner, multiplying the signaling capacity of these structures.

摘要

在轴突中,动作电位(AP)被认为是以一种稳定的二元脉冲形式在其分支上传播,在释放位点均匀地驱动神经传递。然而,通过记录小脑星状细胞(SC)中间神经元的轴突,我们发现即使在同一轴突分支内,突触前终扣位点之间的动作电位宽度也存在差异。仅SC终扣的曲张几何形状并不会导致动作电位持续时间的差异。相反,轴突膜片钳记录显示,主要由快速激活的Kv3型钾通道介导的电流具有异质性的峰值电导密度,在终扣处有聚集的热点,而在相邻的轴突干处表达受限。对单个终扣处Kv通道的阻断表明,释放位点处的局部电流直接引导该位置的动作电位复极化。因此,终扣处Kv3通道的聚集排列和可变表达密度是以近乎逐个突触的方式对动作电位宽度进行分区控制的关键决定因素,增加了这些结构的信号传递能力。

相似文献

1
Synapse-Level Determination of Action Potential Duration by K(+) Channel Clustering in Axons.
Neuron. 2016 Jul 20;91(2):370-83. doi: 10.1016/j.neuron.2016.05.035. Epub 2016 Jun 23.
7
A simulation of action potentials in synaptic boutons during presynaptic inhibition.
J Neurophysiol. 1994 Feb;71(2):538-49. doi: 10.1152/jn.1994.71.2.538.
8
Control of inhibitory synaptic outputs by low excitability of axon terminals revealed by direct recording.
Neuron. 2015 Mar 18;85(6):1273-88. doi: 10.1016/j.neuron.2015.02.013. Epub 2015 Feb 26.

引用本文的文献

1
A novel mechanism for short-term post-tetanic plasticity in thalamocortical neurons.
Brain Res. 2025 Jul 15;1859:149654. doi: 10.1016/j.brainres.2025.149654. Epub 2025 Apr 21.
2
Molecular mechanism governing the plasticity of use-dependent spike broadening in dorsal root ganglion neurons.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2411033121. doi: 10.1073/pnas.2411033121. Epub 2024 Dec 31.
3
Impaired excitability of fast-spiking neurons in a novel mouse model of epileptic encephalopathy.
bioRxiv. 2024 Sep 27:2024.09.27.615463. doi: 10.1101/2024.09.27.615463.
4
The binding and mechanism of a positive allosteric modulator of Kv3 channels.
Nat Commun. 2024 Mar 21;15(1):2533. doi: 10.1038/s41467-024-46813-8.
5
Beyond a Transmission Cable-New Technologies to Reveal the Richness in Axonal Electrophysiology.
J Neurosci. 2024 Mar 13;44(11):e1446232023. doi: 10.1523/JNEUROSCI.1446-23.2023.
6
Targeted therapy improves cellular dysfunction, ataxia, and seizure susceptibility in a model of a progressive myoclonus epilepsy.
Cell Rep Med. 2024 Feb 20;5(2):101389. doi: 10.1016/j.xcrm.2023.101389. Epub 2024 Jan 23.
7
Regulation of Neurotransmitter Release by K Channels.
Adv Neurobiol. 2023;33:305-331. doi: 10.1007/978-3-031-34229-5_12.
8
The computational power of the human brain.
Front Cell Neurosci. 2023 Aug 7;17:1220030. doi: 10.3389/fncel.2023.1220030. eCollection 2023.

本文引用的文献

1
Control of inhibitory synaptic outputs by low excitability of axon terminals revealed by direct recording.
Neuron. 2015 Mar 18;85(6):1273-88. doi: 10.1016/j.neuron.2015.02.013. Epub 2015 Feb 26.
3
Vesicular release statistics and unitary postsynaptic current at single GABAergic synapses.
Neuron. 2015 Jan 7;85(1):159-172. doi: 10.1016/j.neuron.2014.12.006. Epub 2014 Dec 24.
4
Control and plasticity of the presynaptic action potential waveform at small CNS nerve terminals.
Neuron. 2014 Nov 19;84(4):778-89. doi: 10.1016/j.neuron.2014.09.038. Epub 2014 Oct 30.
5
Ultrafast action potentials mediate kilohertz signaling at a central synapse.
Neuron. 2014 Oct 1;84(1):152-163. doi: 10.1016/j.neuron.2014.08.036. Epub 2014 Sep 11.
7
A supercritical density of Na(+) channels ensures fast signaling in GABAergic interneuron axons.
Nat Neurosci. 2014 May;17(5):686-93. doi: 10.1038/nn.3678. Epub 2014 Mar 23.
8
Readily releasable pool of synaptic vesicles measured at single synaptic contacts.
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18138-43. doi: 10.1073/pnas.1209798109. Epub 2012 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验