Wengert Eric R, Cheng Melody A, Liebergall Sophie R, Markwalter Kelly H, Hong Yerahm, Arias Leroy, Marsh Eric D, Zhang Xiaohong, Somarowthu Ala, Goldberg Ethan M
Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, U.S.A.
School of Arts and Sciences, The University of Pennsylvania, Philadelphia, PA, U.S.A.
bioRxiv. 2024 Sep 27:2024.09.27.615463. doi: 10.1101/2024.09.27.615463.
The recurrent pathogenic variant -p.Ala421Val (A421V) is a cause of developmental and epileptic encephalopathy characterized by moderate-to-severe developmental delay/intellectual disability, and infantile-onset treatment-resistant epilepsy with multiple seizure types including myoclonic seizures. Yet, the mechanistic basis of disease is unclear. encodes Kv3.1, a voltage-gated potassium channel subunit that is highly and selectively expressed in neurons capable of generating action potentials at high frequency, including parvalbumin-positive fast-spiking GABAergic inhibitory interneurons in cerebral cortex (PV-INs) known to be important for cognitive function and plasticity as well as control of network excitation to prevent seizures. In this study, we generate a novel transgenic mouse model with conditional expression of the Ala421Val pathogenic missense variant (-A421V/+ mice) to explore the physiological mechanisms of developmental and epileptic encephalopathy. Our results indicate that global heterozygous expression of the A421V variant leads to epilepsy and premature lethality. We observe decreased PV-IN cell surface expression of Kv3.1 via immunohistochemistry, decreased voltage-gated potassium current density in PV-INs using outside-out nucleated macropatch recordings in brain slice, and profound impairments in the intrinsic excitability of cerebral cortex PV-INs but not excitatory neurons in current-clamp electrophysiology. two-photon calcium imaging revealed hypersynchronous discharges correlated with brief paroxysmal movements, subsequently shown to be myoclonic seizures on electroencephalography. We found alterations in PV-IN-mediated inhibitory neurotransmission in young adult but not juvenile -A421V/+ mice relative to wild-type controls. Together, these results establish the impact of the recurrent Kv3.1-A421V variant on neuronal excitability and synaptic physiology across development to drive network dysfunction underlying epileptic encephalopathy.
复发性致病变体-p.Ala421Val(A421V)是导致发育性和癫痫性脑病的原因,其特征为中度至重度发育迟缓/智力残疾,以及婴儿期起病的难治性癫痫,发作类型多样,包括肌阵挛发作。然而,疾病的机制基础尚不清楚。 编码Kv3.1,一种电压门控钾通道亚基,在能够高频产生动作电位的神经元中高度且选择性地表达,包括大脑皮层中对认知功能和可塑性以及控制网络兴奋以预防癫痫很重要的小白蛋白阳性快速放电GABA能抑制性中间神经元(PV-INs)。在本研究中,我们构建了一种新型转基因小鼠模型,条件性表达Ala421Val致病错义变体(-A421V/+小鼠)以探索发育性和癫痫性脑病的生理机制。我们的结果表明,A421V变体的整体杂合表达导致癫痫和过早死亡。通过免疫组织化学,我们观察到Kv3.1在PV-IN细胞表面的表达降低;使用脑片外向核大膜片钳记录,发现PV-INs中的电压门控钾电流密度降低;在电流钳电生理学中,大脑皮层PV-INs的内在兴奋性有严重损伤,但兴奋性神经元没有。 双光子钙成像显示与短暂阵发性运动相关的超同步放电,随后在脑电图上显示为肌阵挛发作。我们发现,相对于野生型对照,年轻成年但非幼年的-A421V/+小鼠中PV-IN介导的抑制性神经传递发生了改变。总之,这些结果确定了复发性Kv3.1-A421V变体对整个发育过程中神经元兴奋性和突触生理学的影响,从而驱动癫痫性脑病潜在的网络功能障碍。