Cole Veronica T, Bauer Daniel J
Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill.
Struct Equ Modeling. 2016;23(4):615-631. doi: 10.1080/10705511.2016.1168266. Epub 2016 May 9.
Mixture models capture heterogeneity in data by decomposing the population into latent subgroups, each of which is governed by its own subgroup-specific set of parameters. Despite the flexibility and widespread use of these models, most applications have focused solely on making inferences for whole or sub-populations, rather than individual cases. The current article presents a general framework for computing marginal and conditional predicted values for individuals using mixture model results. These predicted values can be used to characterize covariate effects, examine the fit of the model for specific individuals, or forecast future observations from previous ones. Two empirical examples are provided to demonstrate the usefulness of individual predicted values in applications of mixture models. The first example examines the relative timing of initiation of substance use using a multiple event process survival mixture model whereas the second example evaluates changes in depressive symptoms over adolescence using a growth mixture model.
混合模型通过将总体分解为潜在子组来捕捉数据中的异质性,每个子组由其自身特定于子组的一组参数控制。尽管这些模型具有灵活性且应用广泛,但大多数应用仅专注于对整个或子群体进行推断,而非针对个体案例。本文提出了一个通用框架,用于使用混合模型结果计算个体的边际和条件预测值。这些预测值可用于表征协变量效应、检查模型对特定个体的拟合情况,或根据先前观察预测未来观察结果。提供了两个实证例子来证明个体预测值在混合模型应用中的有用性。第一个例子使用多事件过程生存混合模型研究物质使用开始的相对时间,而第二个例子使用增长混合模型评估青少年时期抑郁症状的变化。