Suppr超能文献

关于使用混合模型进行个体预测的说明。

A Note on the Use of Mixture Models for Individual Prediction.

作者信息

Cole Veronica T, Bauer Daniel J

机构信息

Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill.

出版信息

Struct Equ Modeling. 2016;23(4):615-631. doi: 10.1080/10705511.2016.1168266. Epub 2016 May 9.

Abstract

Mixture models capture heterogeneity in data by decomposing the population into latent subgroups, each of which is governed by its own subgroup-specific set of parameters. Despite the flexibility and widespread use of these models, most applications have focused solely on making inferences for whole or sub-populations, rather than individual cases. The current article presents a general framework for computing marginal and conditional predicted values for individuals using mixture model results. These predicted values can be used to characterize covariate effects, examine the fit of the model for specific individuals, or forecast future observations from previous ones. Two empirical examples are provided to demonstrate the usefulness of individual predicted values in applications of mixture models. The first example examines the relative timing of initiation of substance use using a multiple event process survival mixture model whereas the second example evaluates changes in depressive symptoms over adolescence using a growth mixture model.

摘要

混合模型通过将总体分解为潜在子组来捕捉数据中的异质性,每个子组由其自身特定于子组的一组参数控制。尽管这些模型具有灵活性且应用广泛,但大多数应用仅专注于对整个或子群体进行推断,而非针对个体案例。本文提出了一个通用框架,用于使用混合模型结果计算个体的边际和条件预测值。这些预测值可用于表征协变量效应、检查模型对特定个体的拟合情况,或根据先前观察预测未来观察结果。提供了两个实证例子来证明个体预测值在混合模型应用中的有用性。第一个例子使用多事件过程生存混合模型研究物质使用开始的相对时间,而第二个例子使用增长混合模型评估青少年时期抑郁症状的变化。

相似文献

1
A Note on the Use of Mixture Models for Individual Prediction.
Struct Equ Modeling. 2016;23(4):615-631. doi: 10.1080/10705511.2016.1168266. Epub 2016 May 9.
5
Marginalized mixture models for count data from multiple source populations.
J Stat Distrib Appl. 2017;4(1):3. doi: 10.1186/s40488-017-0057-4. Epub 2017 Apr 7.
6
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
8
Bayesian spatiotemporal crash frequency models with mixture components for space-time interactions.
Accid Anal Prev. 2018 Mar;112:84-93. doi: 10.1016/j.aap.2017.12.020. Epub 2018 Jan 8.
9
10

引用本文的文献

2
Stress and Sleep Duration in Immune and Neuroendocrine Patterning. An Analytical Triangulation in ELSA.
medRxiv. 2024 Jul 24:2024.07.23.24310898. doi: 10.1101/2024.07.23.24310898.
3
Developmental Trajectory of Anticipation: Insights from Sequential Comparative Judgments.
Behav Sci (Basel). 2023 Aug 3;13(8):646. doi: 10.3390/bs13080646.
4
Reorienting Latent Variable Modeling for Supervised Learning.
Multivariate Behav Res. 2023 Nov-Dec;58(6):1057-1071. doi: 10.1080/00273171.2023.2182753. Epub 2023 May 25.
5
Stochastic Comparisons of Weighted Distributions and Their Mixtures.
Entropy (Basel). 2020 Jul 30;22(8):843. doi: 10.3390/e22080843.
6
Trajectories of child protective services contact among Alaska Native/American Indian and non-Native children.
Child Abuse Negl. 2019 Sep;95:104044. doi: 10.1016/j.chiabu.2019.104044. Epub 2019 Jun 26.

本文引用的文献

1
Using Multilevel Logistic Regression to Evaluate Person-Fit in IRT Models.
Multivariate Behav Res. 2000 Oct 1;35(4):543-68. doi: 10.1207/S15327906MBR3504_06.
2
Detecting and Explaining Aberrant Responding to the Outcome Questionnaire-45.
Assessment. 2015 Aug;22(4):513-24. doi: 10.1177/1073191114560882. Epub 2014 Dec 16.
3
Delineating prototypical patterns of substance use initiations over time.
Addiction. 2015 Apr;110(4):585-94. doi: 10.1111/add.12816. Epub 2015 Jan 21.
4
Latent Class Analysis With Distal Outcomes: A Flexible Model-Based Approach.
Struct Equ Modeling. 2013 Jan;20(1):1-26. doi: 10.1080/10705511.2013.742377.
5
Using a shared parameter mixture model to estimate change during treatment when termination is related to recovery speed.
J Consult Clin Psychol. 2014 Oct;82(5):813-27. doi: 10.1037/a0034831. Epub 2013 Nov 25.
6
A discrete-time Multiple Event Process Survival Mixture (MEPSUM) model.
Psychol Methods. 2014 Jun;19(2):251-64. doi: 10.1037/a0034281. Epub 2013 Sep 30.
8
Mixture class recovery in GMM under varying degrees of class separation: frequentist versus Bayesian estimation.
Psychol Methods. 2013 Jun;18(2):186-219. doi: 10.1037/a0031609. Epub 2013 Mar 25.
9
Not quite normal: Consequences of violating the assumption of normality in regression mixture models.
Struct Equ Modeling. 2012;19(2):227-249. doi: 10.1080/10705511.2012.659622. Epub 2012 May 17.
10
Evaluation of structural equation mixture models Parameter estimates and correct class assignment.
Struct Equ Modeling. 2010 Apr 1;17(2):165-192. doi: 10.1080/10705511003659318.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验