Suppr超能文献

在个体测量场合框架下,采用分段线性轨迹扩展增长混合模型来评估共同发展的异质性。

Extending growth mixture model to assess heterogeneity in joint development with piecewise linear trajectories in the framework of individual measurement occasions.

机构信息

Department of Biometrics, Vertex Pharmaceuticals.

Department of Biostatistics, School of Medicine, Virginia Commonwealth University.

出版信息

Psychol Methods. 2023 Oct;28(5):1029-1051. doi: 10.1037/met0000500. Epub 2022 Jul 18.

Abstract

Almost always, developmental processes are multivariate in nature such that several outcomes and the development among these variables are correlated; therefore, empirical researchers often desire to examine two or more variables over time to understand how these outcomes and their change patterns are correlated. Multivariate growth models (MGMs) allow researchers to examine the correlations among developmental parameters. This study relaxes one population assumption of MGMs to investigate possible latent classes of joint development. The developed model enables the investigation of heterogeneity in the correlation between longitudinal outcomes and the effect of covariates on heterogeneity. More importantly, we propose using the piecewise linear functional form to estimate the stage-specific growth rates and stage-specific correlations. We demonstrate the proposed model through a simulation study and an analysis of real-world data. Our simulation study shows that the proposed model can separate joint development into multiple latent classes and provide unbiased and accurate point estimates with target coverage probabilities for the parameters of interest. Using longitudinal reading and mathematics scores from Grade K to 5, we demonstrate that the proposed model can capture heterogeneity in the correlation between joint development and estimate the stage-specific correlations. Additionally, we demonstrate how to identify the covariates that contribute the most to latent classes and transform candidate covariates from a large set to a manageable set while retaining the meaningful properties of the original covariate set for the mixture model with joint developmental processes. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

发展过程通常是多变量的,即几个结果和这些变量之间的发展是相关的;因此,实证研究人员通常希望随着时间的推移检查两个或更多变量,以了解这些结果及其变化模式是如何相关的。多元增长模型 (MGM) 允许研究人员研究发展参数之间的相关性。本研究放宽了 MGM 的一个总体假设,以调查联合发展的可能潜在类别。所开发的模型能够研究纵向结果之间相关性的异质性以及协变量对异质性的影响。更重要的是,我们建议使用分段线性函数形式来估计特定阶段的增长率和特定阶段的相关性。我们通过模拟研究和对真实世界数据的分析来演示所提出的模型。我们的模拟研究表明,所提出的模型可以将联合发展分为多个潜在类别,并为感兴趣的参数提供无偏且准确的点估计值,以及目标覆盖率。我们使用从 K 年级到 5 年级的纵向阅读和数学成绩,演示了所提出的模型可以捕捉联合发展之间相关性的异质性,并估计特定阶段的相关性。此外,我们展示了如何识别对潜在类别贡献最大的协变量,并在保留混合模型中原始协变量集的有意义属性的同时,将候选协变量从一大组转换为可管理的一组,用于具有联合发展过程的混合模型。(PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验