Bhardwaj Neha, Pandey Akhilesh, Satpati Biswarup, Tomar Monika, Gupta Vinay, Mohapatra Satyabrata
School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India.
Phys Chem Chem Phys. 2016 Jul 28;18(28):18846-54. doi: 10.1039/c6cp01758d. Epub 2016 Jun 27.
We report the synthesis of Cu doped SnO2 nanostructures with enhanced CO gas sensing properties by a facile wet chemical method. The effects of Cu doping on the structural and optical properties of SnO2 nanostructures were investigated using X-ray diffraction, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM) with energy dispersive X-ray spectroscopy, Raman spectroscopy and photoluminescence spectroscopy. FESEM studies revealed the presence of nanosheets and nanodisc-like structures in Cu doped SnO2 samples. Gas sensing studies showed that the sensor prepared using 1% Cu doped SnO2 nanostructures exhibits highly enhanced CO gas sensing properties as compared to pure SnO2 nanostructures and shows excellent selectivity for CO with negligible interference from CH4, CO2 and NO2. The possible mechanism for the enhanced CO gas sensing properties of Cu doped SnO2 nanostructures is proposed.
我们报道了通过一种简便的湿化学方法合成具有增强的CO气敏性能的Cu掺杂SnO₂纳米结构。使用X射线衍射、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)和高分辨率TEM(HRTEM)以及能量色散X射线光谱、拉曼光谱和光致发光光谱研究了Cu掺杂对SnO₂纳米结构的结构和光学性质的影响。FESEM研究揭示了Cu掺杂的SnO₂样品中存在纳米片和纳米盘状结构。气敏研究表明,与纯SnO₂纳米结构相比,使用1% Cu掺杂的SnO₂纳米结构制备的传感器表现出高度增强的CO气敏性能,并且对CO具有优异的选择性,来自CH₄、CO₂和NO₂的干扰可忽略不计。提出了Cu掺杂的SnO₂纳米结构增强CO气敏性能的可能机制。