文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Distinct lateral inhibitory circuits drive parallel processing of sensory information in the mammalian olfactory bulb.

作者信息

Geramita Matthew A, Burton Shawn D, Urban Nathan N

机构信息

Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States.

Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, United States.

出版信息

Elife. 2016 Jun 28;5:e16039. doi: 10.7554/eLife.16039.


DOI:10.7554/eLife.16039
PMID:27351103
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4972542/
Abstract

Splitting sensory information into parallel pathways is a common strategy in sensory systems. Yet, how circuits in these parallel pathways are composed to maintain or even enhance the encoding of specific stimulus features is poorly understood. Here, we have investigated the parallel pathways formed by mitral and tufted cells of the olfactory system in mice and characterized the emergence of feature selectivity in these cell types via distinct lateral inhibitory circuits. We find differences in activity-dependent lateral inhibition between mitral and tufted cells that likely reflect newly described differences in the activation of deep and superficial granule cells. Simulations show that these circuit-level differences allow mitral and tufted cells to best discriminate odors in separate concentration ranges, indicating that segregating information about different ranges of stimulus intensity may be an important function of these parallel sensory pathways.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/0405934b663d/elife-16039-fig6-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/83fcb3005833/elife-16039-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/ac580892a483/elife-16039-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/bee0e895cb3a/elife-16039-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/68a4a8a578fc/elife-16039-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/a892b2481103/elife-16039-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/441202db66ad/elife-16039-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/4456a00cf7cd/elife-16039-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/5a459cc5d159/elife-16039-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/4536e073cc59/elife-16039-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/b34231066581/elife-16039-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/a0258ce1c93e/elife-16039-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/f833dbfaa4cc/elife-16039-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/338a69ce2aa2/elife-16039-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/6ab611933253/elife-16039-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/1a83b3437b29/elife-16039-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/d9a2e5e9221b/elife-16039-fig6-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/0405934b663d/elife-16039-fig6-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/83fcb3005833/elife-16039-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/ac580892a483/elife-16039-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/bee0e895cb3a/elife-16039-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/68a4a8a578fc/elife-16039-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/a892b2481103/elife-16039-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/441202db66ad/elife-16039-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/4456a00cf7cd/elife-16039-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/5a459cc5d159/elife-16039-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/4536e073cc59/elife-16039-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/b34231066581/elife-16039-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/a0258ce1c93e/elife-16039-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/f833dbfaa4cc/elife-16039-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/338a69ce2aa2/elife-16039-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/6ab611933253/elife-16039-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/1a83b3437b29/elife-16039-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/d9a2e5e9221b/elife-16039-fig6-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/4972542/0405934b663d/elife-16039-fig6-figsupp3.jpg

相似文献

[1]
Distinct lateral inhibitory circuits drive parallel processing of sensory information in the mammalian olfactory bulb.

Elife. 2016-6-28

[2]
Postnatal Odor Exposure Increases the Strength of Interglomerular Lateral Inhibition onto Olfactory Bulb Tufted Cells.

J Neurosci. 2016-12-7

[3]
Normalized Neural Representations of Complex Odors.

PLoS One. 2016-11-11

[4]
Respiration drives network activity and modulates synaptic and circuit processing of lateral inhibition in the olfactory bulb.

J Neurosci. 2012-1-4

[5]
Organization of inhibition in the rat olfactory bulb external plexiform layer.

J Neurophysiol. 1993-7

[6]
Differences in Glomerular-Layer-Mediated Feedforward Inhibition onto Mitral and Tufted Cells Lead to Distinct Modes of Intensity Coding.

J Neurosci. 2017-2-8

[7]
Interglomerular center-surround inhibition shapes odorant-evoked input to the mouse olfactory bulb in vivo.

J Neurophysiol. 2006-3

[8]
A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system.

Front Neural Circuits. 2014-2-7

[9]
Two distinct channels of olfactory bulb output.

Neuron. 2012-7-26

[10]
Temporal Dynamics of Inhalation-Linked Activity across Defined Subpopulations of Mouse Olfactory Bulb Neurons Imaged .

eNeuro. 2019-6-27

引用本文的文献

[1]
New Neurons in the Postnatal Olfactory System: Functions in the Healthy and Regenerating Brain.

Brain Sci. 2025-6-2

[2]
Timing Matters: Lessons From Perinatal Neurogenesis in the Olfactory Bulb.

J Comp Neurol. 2025-4

[3]
3D spatial transcriptomics reveals the molecular structure of input and output pathways in the mouse olfactory bulb.

bioRxiv. 2025-4-23

[4]
Ex Vivo Functional Characterization of Mouse Olfactory Bulb Projection Neurons Reveals a Heterogeneous Continuum.

eNeuro. 2025-3-5

[5]
Lateral lamina V projection neuron axon collaterals connect sensory processing across the dorsal horn of the mouse spinal cord.

Sci Rep. 2024-11-1

[6]
Fast-spiking interneuron detonation drives high-fidelity inhibition in the olfactory bulb.

PLoS Biol. 2024-8

[7]
Neurogenesis dynamics in the olfactory bulb: deciphering circuitry organization, function, and adaptive plasticity.

Neural Regen Res. 2025-6-1

[8]
A specific olfactory bulb interneuron subtype Tpbg/5T4 generated at embryonic and neonatal stages.

Front Neural Circuits. 2024

[9]
Fast-spiking interneuron detonation drives high-fidelity inhibition in the olfactory bulb.

bioRxiv. 2024-5-8

[10]
The spiking output of the mouse olfactory bulb encodes large-scale temporal features of natural odor environments.

bioRxiv. 2024-7-1

本文引用的文献

[1]
Neural Coding of Perceived Odor Intensity.

eNeuro. 2015-12-3

[2]
Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb.

J Neurosci. 2015-10-21

[3]
Neuronal pattern separation in the olfactory bulb improves odor discrimination learning.

Nat Neurosci. 2015-10

[4]
An Interglomerular Circuit Gates Glomerular Output and Implements Gain Control in the Mouse Olfactory Bulb.

Neuron. 2015-7-1

[5]
Cortical Feedback Decorrelates Olfactory Bulb Output in Awake Mice.

Neuron. 2015-6-17

[6]
Intraglomerular lateral inhibition promotes spike timing variability in principal neurons of the olfactory bulb.

J Neurosci. 2015-3-11

[7]
Functional transformations of odor inputs in the mouse olfactory bulb.

Front Neural Circuits. 2014-11-4

[8]
Greater excitability and firing irregularity of tufted cells underlies distinct afferent-evoked activity of olfactory bulb mitral and tufted cells.

J Physiol. 2014-5-15

[9]
Broadly tuned and respiration-independent inhibition in the olfactory bulb of awake mice.

Nat Neurosci. 2014-3-2

[10]
Division of labor for division: inhibitory interneurons with different spatial landscapes in the olfactory system.

Neuron. 2013-12-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索