Suppr超能文献

肾小球层介导的对僧帽细胞和簇状细胞的前馈抑制差异导致不同的强度编码模式。

Differences in Glomerular-Layer-Mediated Feedforward Inhibition onto Mitral and Tufted Cells Lead to Distinct Modes of Intensity Coding.

作者信息

Geramita Matthew, Urban Nathan N

机构信息

Department of Neurobiology, Center for Neuroscience at the University of Pittsburgh, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.

Department of Neurobiology, Center for Neuroscience at the University of Pittsburgh, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213

出版信息

J Neurosci. 2017 Feb 8;37(6):1428-1438. doi: 10.1523/JNEUROSCI.2245-16.2016. Epub 2016 Dec 27.

Abstract

Understanding how each of the many interneuron subtypes affects brain network activity is critical. In the mouse olfactory system, mitral cells (MCs) and tufted cells (TCs) comprise parallel pathways of olfactory bulb output that are thought to play distinct functional roles in odor coding. Here, in acute mouse olfactory bulb slices, we test how the two major classes of olfactory bulb interneurons differentially contribute to differences in MC versus TC response properties. We show that, whereas TCs respond to olfactory sensory neuron (OSN) stimulation with short latencies regardless of stimulation intensity, MC latencies correlate negatively with stimulation intensity. These differences between MCs and TCs are caused in part by weaker excitatory and stronger inhibitory currents onto MCs than onto TCs. These differences in inhibition between MCs and TCs are most pronounced during the first 150 ms after stimulation and are mediated by glomerular layer circuits. Therefore, blocking inhibition originating in the glomerular layer, but not granule-cell-mediated inhibition, reduces MC spike latency at weak stimulation intensities and distinct temporal patterns of odor-evoked responses in MCs and TCs emerge in part due to differences in glomerular-layer-mediated inhibition. Olfactory bulb mitral and tufted cells display different odor-evoked responses and are thought to form parallel channels of olfactory bulb output. Therefore, determining the circuit-level causes that drive these differences is vital. Here, we find that longer-latency responses in mitral cells, compared with tufted cells, are due to weaker excitation and stronger glomerular-layer-mediated inhibition.

摘要

了解众多中间神经元亚型中的每一种如何影响大脑网络活动至关重要。在小鼠嗅觉系统中,僧帽细胞(MCs)和簇状细胞(TCs)构成嗅球输出的平行通路,被认为在气味编码中发挥不同的功能作用。在此,在急性小鼠嗅球切片中,我们测试了两类主要的嗅球中间神经元如何不同地导致MC与TC反应特性的差异。我们发现,TCs对嗅觉感觉神经元(OSN)刺激的反应潜伏期较短,且与刺激强度无关,而MC的潜伏期与刺激强度呈负相关。MCs和TCs之间的这些差异部分是由于作用于MCs的兴奋性电流较弱,抑制性电流较强,而作用于TCs的则相反。MCs和TCs之间的抑制差异在刺激后的前150毫秒最为明显,并且由肾小球层回路介导。因此,阻断源自肾小球层的抑制,但不阻断颗粒细胞介导的抑制,会在弱刺激强度下降低MC的峰潜伏期,并且MCs和TCs中气味诱发反应的不同时间模式部分是由于肾小球层介导的抑制差异而出现的。嗅球僧帽细胞和簇状细胞表现出不同的气味诱发反应,被认为形成了嗅球输出的平行通道。因此,确定驱动这些差异的回路水平原因至关重要。在此,我们发现,与簇状细胞相比,僧帽细胞中较长潜伏期的反应是由于较弱的兴奋性和较强的肾小球层介导的抑制。

相似文献

1
Differences in Glomerular-Layer-Mediated Feedforward Inhibition onto Mitral and Tufted Cells Lead to Distinct Modes of Intensity Coding.
J Neurosci. 2017 Feb 8;37(6):1428-1438. doi: 10.1523/JNEUROSCI.2245-16.2016. Epub 2016 Dec 27.
2
CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb.
J Neurosci. 2020 Aug 5;40(32):6189-6206. doi: 10.1523/JNEUROSCI.0769-20.2020. Epub 2020 Jun 30.
3
Postnatal Odor Exposure Increases the Strength of Interglomerular Lateral Inhibition onto Olfactory Bulb Tufted Cells.
J Neurosci. 2016 Dec 7;36(49):12321-12327. doi: 10.1523/JNEUROSCI.1991-16.2016.
4
Cell type-specific and frequency-dependent centrifugal modulation in olfactory bulb output neurons in vivo.
J Neurophysiol. 2024 Jun 1;131(6):1226-1239. doi: 10.1152/jn.00078.2024. Epub 2024 May 1.
8
Long-Range GABAergic Inhibition Modulates Spatiotemporal Dynamics of the Output Neurons in the Olfactory Bulb.
J Neurosci. 2021 Apr 21;41(16):3610-3621. doi: 10.1523/JNEUROSCI.1498-20.2021. Epub 2021 Mar 9.
9
Short-term plasticity in glomerular inhibitory circuits shapes olfactory bulb output.
J Neurophysiol. 2020 Mar 1;123(3):1120-1132. doi: 10.1152/jn.00628.2019. Epub 2020 Jan 29.
10
Task Learning Promotes Plasticity of Interneuron Connectivity Maps in the Olfactory Bulb.
J Neurosci. 2016 Aug 24;36(34):8856-71. doi: 10.1523/JNEUROSCI.0794-16.2016.

引用本文的文献

2
Reduction in the olfactory ability in aging mutant mice without evidence of neurodegeneration.
Front Aging. 2024 Oct 25;5:1462900. doi: 10.3389/fragi.2024.1462900. eCollection 2024.
3
Common principles for odour coding across vertebrates and invertebrates.
Nat Rev Neurosci. 2024 Jul;25(7):453-472. doi: 10.1038/s41583-024-00822-0. Epub 2024 May 28.
5
High-throughput sequencing of single neuron projections reveals spatial organization in the olfactory cortex.
Cell. 2022 Oct 27;185(22):4117-4134.e28. doi: 10.1016/j.cell.2022.09.038.
6
Long-range functional loops in the mouse olfactory system and their roles in computing odor identity.
Neuron. 2022 Dec 7;110(23):3970-3985.e7. doi: 10.1016/j.neuron.2022.09.005. Epub 2022 Sep 28.
8
Pathological consequences of chronic olfactory inflammation on neurite morphology of olfactory bulb projection neurons.
Brain Behav Immun Health. 2022 Mar 18;21:100451. doi: 10.1016/j.bbih.2022.100451. eCollection 2022 May.
9
Fast and slow feedforward inhibitory circuits for cortical odor processing.
Elife. 2022 Mar 17;11:e73406. doi: 10.7554/eLife.73406.

本文引用的文献

1
The Interglomerular Circuit Potently Inhibits Olfactory Bulb Output Neurons by Both Direct and Indirect Pathways.
J Neurosci. 2016 Sep 14;36(37):9604-17. doi: 10.1523/JNEUROSCI.1763-16.2016.
2
Parallel processing of afferent olfactory sensory information.
J Physiol. 2016 Nov 15;594(22):6715-6732. doi: 10.1113/JP272755. Epub 2016 Aug 2.
4
Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels.
Nat Neurosci. 2016 Feb;19(2):271-82. doi: 10.1038/nn.4219. Epub 2016 Jan 11.
5
Neural Coding of Perceived Odor Intensity.
eNeuro. 2015 Dec 3;2(6). doi: 10.1523/ENEURO.0083-15.2015. eCollection 2015 Nov-Dec.
7
Neuronal pattern separation in the olfactory bulb improves odor discrimination learning.
Nat Neurosci. 2015 Oct;18(10):1474-1482. doi: 10.1038/nn.4089. Epub 2015 Aug 24.
9
Cortical Feedback Decorrelates Olfactory Bulb Output in Awake Mice.
Neuron. 2015 Jun 17;86(6):1461-77. doi: 10.1016/j.neuron.2015.05.023. Epub 2015 Jun 4.
10
Intraglomerular lateral inhibition promotes spike timing variability in principal neurons of the olfactory bulb.
J Neurosci. 2015 Mar 11;35(10):4319-31. doi: 10.1523/JNEUROSCI.2181-14.2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验