College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics , Nanjing 210016, P. R. China.
ACS Appl Mater Interfaces. 2016 Jul 20;8(28):18060-8. doi: 10.1021/acsami.6b04810. Epub 2016 Jul 8.
The lithium-oxygen batteries have been considered as the progressive energy storage equipment for their expected specific energy. To improve the electrochemical catalytic performance in the lithium-oxygen batteries, the NiCo2O4 nanoparticles (NCONPs) are firmly anchored onto the surface of the N-doped reduced graphene oxide (N-rGO) by the hydrothermal method followed by low-temperature calcination. Compared with the pure metallic oxide, the introduction of the rGO can create the high surface area, which give a good performance for ORR (oxygen reduction reaction), and improve the electrical conductivity between the NCONPs. The high-loading NCONPs also ensure the material to have great catalytic activity for OER (oxygen evolution reaction), and the rGO can be protected by the nanoparticles coating against the side reaction with the Li2O2. The as-synthesized NCO@N-rGO composites deliver a specific surface area (about 242.5 m(2) g(-1)), exhibiting three-dimensional (3D) porous structure, which provides a large passageway for the diffusion of the oxygen and benefits the infiltration of electrolyte and the storage of the discharge products. Owing to these special architectures features and intrinsic materials, the NCO@N-rGO cathode delivers a high specific capacity (6716 mAh g(-1)), great rate performance, and excellent cycling stability with cutoff capacity of 1000 mAh g(-1) (112 cycles) in the lithium-oxygen batteries. The improved electrochemical catalytic activity and the special 3D porous structure make the NCO@N-rGO composites be a promising candidate for Li-O2 batteries.
锂-氧电池因其预期的比能量而被认为是先进的储能设备。为了提高锂-氧电池的电化学催化性能,采用水热法将 N 掺杂还原氧化石墨烯(N-rGO)表面牢固地锚定纳米 NiCo2O4(NCONPs),然后进行低温煅烧。与纯金属氧化物相比,rGO 的引入可以创造出高表面积,为 ORR(氧还原反应)提供良好的性能,并提高 NCONPs 之间的电导率。高负载量的 NCONPs 也确保了材料对 OER(析氧反应)具有巨大的催化活性,并且 rGO 可以被纳米粒子涂层保护,防止与 Li2O2 的副反应。合成的 NCO@N-rGO 复合材料具有特定的表面积(约 242.5 m(2) g(-1)),具有三维(3D)多孔结构,为氧气的扩散提供了很大的通道,有利于电解液的渗透和放电产物的存储。由于这些特殊的结构特征和内在材料,NCO@N-rGO 正极在锂-氧电池中具有高比容量(6716 mAh g(-1))、优异的倍率性能和出色的循环稳定性,在截止容量为 1000 mAh g(-1)(112 次循环)时。电化学催化活性的提高和特殊的 3D 多孔结构使 NCO@N-rGO 复合材料成为 Li-O2 电池的有前途的候选材料。