Frederiksen Rikard, Nymark Soile, Kolesnikov Alexander V, Berry Justin D, Adler Leopold, Koutalos Yiannis, Kefalov Vladimir J, Cornwall M Carter
Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology, 33720 Tampere, Finland.
J Gen Physiol. 2016 Jul;148(1):1-11. doi: 10.1085/jgp.201511538.
Photoactivation of vertebrate rhodopsin converts it to the physiologically active Meta II (R*) state, which triggers the rod light response. Meta II is rapidly inactivated by the phosphorylation of C-terminal serine and threonine residues by G-protein receptor kinase (Grk1) and subsequent binding of arrestin 1 (Arr1). Meta II exists in equilibrium with the more stable inactive form of rhodopsin, Meta III. Dark adaptation of rods requires the complete thermal decay of Meta II/Meta III into opsin and all-trans retinal and the subsequent regeneration of rhodopsin with 11-cis retinal chromophore. In this study, we examine the regulation of Meta III decay by Grk1 and Arr1 in intact mouse rods and their effect on rod dark adaptation. We measure the rates of Meta III decay in isolated retinas of wild-type (WT), Grk1-deficient (Grk1(-/-)), Arr1-deficient (Arr1(-/-)), and Arr1-overexpressing (Arr1(ox)) mice. We find that in WT mouse rods, Meta III peaks ∼6 min after rhodopsin activation and decays with a time constant (τ) of 17 min. Meta III decay slows in Arr1(-/-) rods (τ of ∼27 min), whereas it accelerates in Arr1(ox) rods (τ of ∼8 min) and Grk1(-/-) rods (τ of ∼13 min). In all cases, regeneration of rhodopsin with exogenous 11-cis retinal is rate limited by the decay of Meta III. Notably, the kinetics of rod dark adaptation in vivo is also modulated by the levels of Arr1 and Grk1. We conclude that, in addition to their well-established roles in Meta II inactivation, Grk1 and Arr1 can modulate the kinetics of Meta III decay and rod dark adaptation in vivo.
脊椎动物视紫红质的光激活将其转化为生理活性的变构体II(R*)状态,从而触发视杆细胞的光反应。变构体II通过G蛋白偶联受体激酶(Grk1)对C端丝氨酸和苏氨酸残基的磷酸化以及随后抑制蛋白1(Arr1)的结合而迅速失活。变构体II与更稳定的视紫红质非活性形式变构体III处于平衡状态。视杆细胞的暗适应需要变构体II/变构体III完全热衰变为视蛋白和全反式视黄醛,随后视紫红质与11-顺式视黄醛发色团再生。在本研究中,我们研究了完整小鼠视杆细胞中Grk1和Arr1对变构体III衰变的调节及其对视杆细胞暗适应的影响。我们测量了野生型(WT)、Grk1缺陷型(Grk1(-/-))、Arr1缺陷型(Arr1(-/-))和Arr1过表达型(Arr1(ox))小鼠分离视网膜中变构体III的衰变率。我们发现,在WT小鼠视杆细胞中,视紫红质激活后约6分钟变构体III达到峰值,并以17分钟的时间常数(τ)衰变。变构体III在Arr1(-/-)视杆细胞中的衰变减慢(τ约为27分钟),而在Arr1(ox)视杆细胞(τ约为8分钟)和Grk1(-/-)视杆细胞(τ约为13分钟)中加速。在所有情况下,用外源性11-顺式视黄醛再生视紫红质的速率受变构体III衰变的限制。值得注意的是,体内视杆细胞暗适应的动力学也受Arr1和Grk1水平的调节。我们得出结论,除了它们在变构体II失活中已确立的作用外,Grk1和Arr1还可以调节变构体III衰变的动力学和体内视杆细胞的暗适应。