College of Engineering and Applied Science, University of Wisconsin, Milwaukee, WI 53201, USA
Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics, Ohio State University, 201 W 19th Ave, Columbus, OH 43210, USA.
Philos Trans A Math Phys Eng Sci. 2016 Aug 6;374(2073). doi: 10.1098/rsta.2016.0185.
Surface patterns affect wetting properties of solid materials allowing manipulation of the phase state of an adjacent fluid. The best known example of this effect is the superhydrophobic composite (Cassie-Baxter) interface with vapour/air pockets between the solid and liquid. Mathematically, the effect of surface micropatterns can be studied by an averaging technique similarly to the method of separation of motions in dynamics. However, averaged parameters are insufficient for robust superhydrophobic and superoleophobic surfaces because additional topography features are important: hierarchical organization and re-entrant roughness. The latter is crucial for the oleophobicity because it enhances the stability of a composite interface. The re-entrant topography can be achieved by various methods. Understanding the role of re-entrant surface topography gives us new insights on the multitude of wetting scenarios beyond the standard Wenzel and Cassie-Baxter models.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.
表面图案会影响固体材料的润湿特性,从而可以控制相邻流体的相态。这种效应的最著名例子是具有蒸气/空气口袋的超疏水复合(Cassie-Baxter)界面。从数学上讲,可以通过类似于动力学中运动分离方法的平均技术来研究表面微图案的效果。但是,由于附加的形貌特征很重要,因此平均参数对于稳健的超疏水和超疏油表面来说是不够的:分层组织和内凹粗糙度。后一种情况对于疏油性至关重要,因为它增强了复合界面的稳定性。可以通过各种方法来实现内凹形貌。对内凹表面形貌的作用的理解为我们提供了超出标准 Wenzel 和 Cassie-Baxter 模型的多种润湿情况的新见解。本文是“绿色科学中的仿生分级结构表面”主题特刊的一部分。