Belozerov Alexander S, Anisimov Vladimir I
Miheev Institute of Metal Physics, Russian Academy of Sciences, 620990 Yekaterinburg, Russia. Ural Federal University, 620002 Yekaterinburg, Russia.
J Phys Condens Matter. 2016 Sep 1;28(34):345601. doi: 10.1088/0953-8984/28/34/345601. Epub 2016 Jun 29.
We calculate magnetic susceptibility of paramagnetic bcc Fe-Mn and Fe-V alloys by two different approaches. The first approach employs the coherent potential approximation (CPA) combined with the dynamical mean-field theory (DMFT). The material-specific Hamiltonians in the Wannier function basis are obtained by density functional theory. In the second approach, we construct supercells modeling the binary alloys and study them using DMFT. Both approaches lead to a qualitative agreement with experimental data. In particular, the decrease of Curie temperature with Mn content and a maximum at about 10 at.% V are well described in units of the Curie temperature of pure iron. In contrast to the Mn impurities, the V ones are found to be antiferromagnetically coupled to Fe atoms. Our calculations for the two-band Anderson-Hubbard model indicate that the antiferromagnetic coupling is responsible for a maximum in the concentration dependence of Curie temperature in Fe-V alloys.
我们通过两种不同的方法计算了顺磁体心立方铁锰和铁钒合金的磁化率。第一种方法采用相干势近似(CPA)并结合动态平均场理论(DMFT)。在Wannier函数基中的特定材料哈密顿量是通过密度泛函理论获得的。在第二种方法中,我们构建了模拟二元合金的超胞,并使用DMFT对其进行研究。两种方法都与实验数据在定性上达成了一致。特别是,居里温度随锰含量的降低以及在约10原子百分比的钒含量处出现最大值,这些都以纯铁的居里温度为单位得到了很好的描述。与锰杂质不同,发现钒杂质与铁原子是反铁磁耦合的。我们对两带安德森 - 哈伯德模型的计算表明,反铁磁耦合是铁钒合金中居里温度浓度依赖性出现最大值的原因。