Suppr超能文献

基于马尔可夫随机场和时间基扩展的扩展源贝叶斯电磁时空成像

Bayesian electromagnetic spatio-temporal imaging of extended sources with Markov Random Field and temporal basis expansion.

作者信息

Liu Ke, Yu Zhu Liang, Wu Wei, Gu Zhenghui, Li Yuanqing, Nagarajan Srikantan

机构信息

College of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China.

College of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China.

出版信息

Neuroimage. 2016 Oct 1;139:385-404. doi: 10.1016/j.neuroimage.2016.06.027. Epub 2016 Jun 26.

Abstract

Estimating the locations and spatial extents of brain sources poses a long-standing challenge for electroencephalography and magnetoencephalography (E/MEG) source imaging. In the present work, a novel source imaging method, Bayesian Electromagnetic Spatio-Temporal Imaging of Extended Sources (BESTIES), which is built upon a Bayesian framework that determines the spatio-temporal smoothness of source activities in a fully data-driven fashion, is proposed to address this challenge. In particular, a Markov Random Field (MRF), which can precisely capture local cortical interactions, is employed to characterize the spatial smoothness of source activities, the temporal dynamics of which are modeled by a set of temporal basis functions (TBFs). Crucially, all of the unknowns in the MRF and TBF models are learned from the data. To accomplish model inference efficiently on high-resolution source spaces, a scalable algorithm is developed to approximate the posterior distribution of the source activities, which is based on the variational Bayesian inference and convex analysis. The performance of BESTIES is assessed using both simulated and actual human E/MEG data. Compared with L-norm constrained methods, BESTIES is superior in reconstructing extended sources with less spatial diffusion and less localization error. By virtue of the MRF, BESTIES also overcomes the drawback of over-focal estimates in sparse constrained methods.

摘要

估计脑源的位置和空间范围对脑电图和脑磁图(E/MEG)源成像来说是一个长期存在的挑战。在本研究中,提出了一种新颖的源成像方法——扩展源的贝叶斯电磁时空成像(BESTIES),该方法基于一个贝叶斯框架,以完全数据驱动的方式确定源活动的时空平滑度,以应对这一挑战。具体而言,采用能够精确捕捉局部皮质相互作用的马尔可夫随机场(MRF)来表征源活动的空间平滑度,其时间动态由一组时间基函数(TBF)建模。至关重要的是,MRF和TBF模型中的所有未知量都从数据中学习得到。为了在高分辨率源空间上高效地进行模型推断,开发了一种基于变分贝叶斯推断和凸分析的可扩展算法,以近似源活动的后验分布。使用模拟和实际的人类E/MEG数据评估了BESTIES的性能。与L范数约束方法相比,BESTIES在重建扩展源方面具有优势,其空间扩散更小,定位误差更小。借助MRF,BESTIES还克服了稀疏约束方法中过聚焦估计的缺点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验