IEEE Trans Neural Syst Rehabil Eng. 2022;30:2362-2372. doi: 10.1109/TNSRE.2022.3190474. Epub 2022 Sep 1.
Accurate reconstruction of cortical activation from electroencephalography and magnetoencephalography (E/MEG) is a long-standing challenge because of the inherently ill-posed inverse problem. In this paper, a novel algorithm under the empirical Bayesian framework, source imaging with smoothness in spatial and temporal domains (SI-SST), is proposed to address this issue. In SI-SST, current sources are decomposed into the product of spatial smoothing kernel, sparseness encoding coefficients, and temporal basis functions (TBFs). Further smoothness is integrated in the temporal domain with the employment of an underlying autoregressive model. Because sparseness encoding coefficients are constructed depending on overlapped clusters over cortex in this model, we derived a novel update rule based on fixed-point criterion instead of the convexity based approach which becomes invalid in this scenario. Entire variables and hyper parameters are updated alternatively in the variational inference procedure. SI-SST was assessed by multiple metrics with both simulated and experimental datasets. In practice, SI-SST had the superior reconstruction performance in both spatial extents and temporal profiles compared to the benchmarks.
准确地从脑电图和脑磁图 (E/MEG) 中重建皮层激活是一个长期存在的挑战,因为这是一个固有的不适定的逆问题。在本文中,我们提出了一种新的算法,即基于经验贝叶斯框架的源成像的空间和时间域平滑 (SI-SST),以解决这个问题。在 SI-SST 中,电流源被分解为空间平滑核、稀疏编码系数和时间基函数 (TBF) 的乘积。进一步的平滑性是通过使用潜在的自回归模型在时间域中集成的。由于在这个模型中,稀疏编码系数是根据皮层上重叠的簇来构建的,因此我们基于定点准则推导出了一个新的更新规则,而不是基于凸性的方法,因为在这种情况下后者是无效的。在变分推理过程中,交替更新整个变量和超参数。我们使用模拟和实验数据集,通过多种指标来评估 SI-SST。在实践中,与基准相比,SI-SST 在空间范围和时间分布方面都具有更好的重建性能。