Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, and ‡College of Science, Harbin Engineering University , Harbin, Heilongjiang 150001, People's Republic of China.
ACS Appl Mater Interfaces. 2016 Jul 20;8(28):18126-31. doi: 10.1021/acsami.6b05244. Epub 2016 Jul 6.
To narrow the band gap (3.2 eV) of TiO2 and extend its practical applicability under sunlight, the doping with nonmetal elements has been used to tune TiO2 electronic structure. However, the doping also brings new recombination centers among the photoinduced charge carriers, which results in a quantum efficiency loss accordingly. It has been proved that the {101} facets of anatase TiO2 are beneficial to generating and transmitting more reductive electrons to promote the H2-evolution in the photoreduction reaction, and the {001} facets exhibit a higher photoreactivity to accelerate the reaction involved of photogenerated hole. Thus, it was considered by us that using the surface heterojunction composed of both {001} and {101} facets may depress the disadvantage of N doping. Fortunately, we successfully synthesized anatase N-doped TiO2 nanobelts with a surface heterojunction of coexposed (101) and (001) facets. As expected, it realized the charge pairs' spatial separation and showed higher photocatalytic activity under a visible-light ray: a hydrogen generation rate of 670 μmol h(-1) g(-1) (much higher than others reported previously in literature of N-doped TiO2 nanobelts).
为了缩小 TiO2 的带隙(3.2eV)并扩展其在阳光下的实际应用,已经使用掺杂非金属元素来调整 TiO2 的电子结构。然而,掺杂也会在光生电荷载流子之间引入新的复合中心,从而导致量子效率损失。已经证明,锐钛矿 TiO2 的{101}面有利于生成和传输更多的还原电子,以促进光还原反应中的 H2 演化,而{001}面表现出更高的光反应性,以加速光生空穴参与的反应。因此,我们认为使用由{001}和{101}面组成的表面异质结可能会抑制 N 掺杂的缺点。幸运的是,我们成功合成了具有共暴露(101)和(001)面的锐钛矿 N 掺杂 TiO2 纳米带的表面异质结。正如预期的那样,它实现了电荷对的空间分离,并在可见光下表现出更高的光催化活性:氢气生成速率为 670μmol h(-1) g(-1)(远高于之前文献中报道的 N 掺杂 TiO2 纳米带的速率)。