Suppr超能文献

用于血友病基因校正的基因组编辑技术。

Genome-editing technologies for gene correction of hemophilia.

作者信息

Park Chul-Yong, Lee Dongjin R, Sung Jin Jea, Kim Dong-Wook

机构信息

Department of Physiology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea.

出版信息

Hum Genet. 2016 Sep;135(9):977-81. doi: 10.1007/s00439-016-1699-x. Epub 2016 Jun 29.

Abstract

Hemophilia is caused by various mutations in blood coagulation factor genes, including factor VIII (FVIII) and factor IX (FIX), that encode key proteins in the blood clotting pathway. Although the addition of therapeutic genes or infusion of clotting factors may be used to remedy hemophilia's symptoms, no permanent cure for the disease exists. Moreover, patients often develop neutralizing antibodies or experience adverse effects that limit the therapy's benefits. However, targeted gene therapy involving the precise correction of these mutated genes at the genome level using programmable nucleases is a promising strategy. These nucleases can induce double-strand breaks (DSBs) on genomes, and repairs of such induced DSBs by the two cellular repair systems enable a targeted gene correction. Going beyond cultured cell systems, we are now entering the age of direct gene correction in vivo using various delivery tools. Here, we describe the current status of in vivo and ex vivo genome-editing technology related to potential hemophilia gene correction and the prominent issues surrounding its application in patients with monogenic diseases.

摘要

血友病是由凝血因子基因的各种突变引起的,这些基因包括凝血因子VIII(FVIII)和凝血因子IX(FIX),它们编码凝血途径中的关键蛋白质。尽管添加治疗性基因或输注凝血因子可用于缓解血友病症状,但目前尚无针对该疾病的永久治愈方法。此外,患者常产生中和抗体或出现不良反应,这限制了治疗的益处。然而,使用可编程核酸酶在基因组水平上精确纠正这些突变基因的靶向基因治疗是一种很有前景的策略。这些核酸酶可在基因组上诱导双链断裂(DSB),而细胞的两种修复系统对这种诱导的DSB进行修复可实现靶向基因校正。超越培养细胞系统,我们现在正进入使用各种递送工具在体内进行直接基因校正的时代。在此,我们描述了与潜在血友病基因校正相关的体内和体外基因组编辑技术的现状,以及围绕其在单基因疾病患者中应用的突出问题。

相似文献

1
Genome-editing technologies for gene correction of hemophilia.
Hum Genet. 2016 Sep;135(9):977-81. doi: 10.1007/s00439-016-1699-x. Epub 2016 Jun 29.
2
Recent progress in gene therapy for hemophilia.
Hum Gene Ther. 2012 Jun;23(6):557-65. doi: 10.1089/hum.2012.088.
3
DNA base editing corrects common hemophilia A mutations and restores factor VIII expression in in vitro and ex vivo models.
J Thromb Haemost. 2024 Aug;22(8):2171-2183. doi: 10.1016/j.jtha.2024.04.020. Epub 2024 May 7.
4
Gene therapy for hemophilia.
J Gene Med. 2001 Jan-Feb;3(1):3-20. doi: 10.1002/1521-2254(200101/02)3:1<3::AID-JGM167>3.0.CO;2-H.
5
[Progress of gene therapy for hemophilia].
Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2015 Feb;23(1):266-9. doi: 10.7534/j.issn.1009-2137.2015.01.050.
6
Gene Therapy for Hemophilia A: Where We Stand.
Curr Gene Ther. 2020;20(2):142-151. doi: 10.2174/1566523220666200806110849.
8
Hemophilia clinical gene therapy: brief review.
Transl Res. 2013 Apr;161(4):307-12. doi: 10.1016/j.trsl.2012.12.016. Epub 2013 Jan 23.
9
[Molecular genetics of hemophilia A].
Medicina (B Aires). 1996;56(5 Pt 1):509-17.
10
Gene therapy for hemophilia.
Curr Opin Mol Ther. 1999 Aug;1(4):493-9.

引用本文的文献

1
Comprehensive analysis of off-target and on-target effects resulting from liver-directed CRISPR-Cas9-mediated gene targeting with AAV vectors.
Mol Ther Methods Clin Dev. 2024 Nov 4;32(4):101365. doi: 10.1016/j.omtm.2024.101365. eCollection 2024 Dec 12.
2
CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia.
Ann Hematol. 2024 Jun;103(6):1805-1817. doi: 10.1007/s00277-023-05457-2. Epub 2023 Sep 22.
3
CRISPR medicine for blood disorders: Progress and challenges in delivery.
Front Genome Ed. 2023 Jan 6;4:1037290. doi: 10.3389/fgeed.2022.1037290. eCollection 2022.
4
Hemophilia a patients with inhibitors: Mechanistic insights and novel therapeutic implications.
Front Immunol. 2022 Dec 8;13:1019275. doi: 10.3389/fimmu.2022.1019275. eCollection 2022.
5
Gene therapy in haemophilia: literature review and regional perspectives for Turkey.
Ther Adv Hematol. 2022 Jul 23;13:20406207221104591. doi: 10.1177/20406207221104591. eCollection 2022.
6
Genome Editing in Medicine: Tools and Challenges.
Acta Med Litu. 2021;28(2):205-219. doi: 10.15388/Amed.2021.28.2.8. Epub 2021 Aug 17.
7
CRISPR/Cas9 and Nanotechnology Pertinence in Agricultural Crop Refinement.
Front Plant Sci. 2022 Apr 8;13:843575. doi: 10.3389/fpls.2022.843575. eCollection 2022.
8
Insights of CRISPR-Cas systems in stem cells: progress in regenerative medicine.
Mol Biol Rep. 2022 Jan;49(1):657-673. doi: 10.1007/s11033-021-06832-w. Epub 2021 Oct 23.
9
Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases.
Mol Neurobiol. 2022 Jan;59(1):191-233. doi: 10.1007/s12035-021-02555-y. Epub 2021 Oct 15.
10
CRISPR/Cas based gene editing: marking a new era in medical science.
Mol Biol Rep. 2021 May;48(5):4879-4895. doi: 10.1007/s11033-021-06479-7. Epub 2021 Jun 18.

本文引用的文献

1
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.
Nature. 2016 May 19;533(7603):420-4. doi: 10.1038/nature17946. Epub 2016 Apr 20.
2
CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse.
EMBO Mol Med. 2016 May 2;8(5):477-88. doi: 10.15252/emmm.201506039. Print 2016 May.
3
Targeting of the human F8 at the multicopy rDNA locus in Hemophilia A patient-derived iPSCs using TALENickases.
Biochem Biophys Res Commun. 2016 Mar 25;472(1):144-9. doi: 10.1016/j.bbrc.2016.02.083. Epub 2016 Feb 24.
4
Pluripotent stem cells progressing to the clinic.
Nat Rev Mol Cell Biol. 2016 Mar;17(3):194-200. doi: 10.1038/nrm.2016.10.
6
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
Nature. 2016 Jan 28;529(7587):490-5. doi: 10.1038/nature16526. Epub 2016 Jan 6.
7
Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery.
Nat Methods. 2016 Jan;13(1):41-50. doi: 10.1038/nmeth.3684.
8
Multidimensional Genome-wide Analyses Show Accurate FVIII Integration by ZFN in Primary Human Cells.
Mol Ther. 2016 Mar;24(3):607-19. doi: 10.1038/mt.2015.223. Epub 2015 Dec 22.
9
Rationally engineered Cas9 nucleases with improved specificity.
Science. 2016 Jan 1;351(6268):84-8. doi: 10.1126/science.aad5227. Epub 2015 Dec 1.
10
Current status of pluripotent stem cells: moving the first therapies to the clinic.
Nat Rev Drug Discov. 2015 Oct;14(10):681-92. doi: 10.1038/nrd4738. Epub 2015 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验