Goldstein Benjamin A, Pencina Michael J, Montez-Rath Maria E, Winkelmayer Wolfgang C
Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
Center for Predictive Medicine, Duke Clinical Research Institute, Durham, North Carolina.
J Am Med Inform Assoc. 2017 Jan;24(1):176-181. doi: 10.1093/jamia/ocw057. Epub 2016 Jun 29.
OBJECTIVE: Electronic health records (EHRs) are a resource for "big data" analytics, containing a variety of data elements. We investigate how different categories of information contribute to prediction of mortality over different time horizons among patients undergoing hemodialysis treatment. MATERIAL AND METHODS: We derived prediction models for mortality over 7 time horizons using EHR data on older patients from a national chain of dialysis clinics linked with administrative data using LASSO (least absolute shrinkage and selection operator) regression. We assessed how different categories of information relate to risk assessment and compared discrete models to time-to-event models. RESULTS: The best predictors used all the available data (c-statistic ranged from 0.72-0.76), with stronger models in the near term. While different variable groups showed different utility, exclusion of any particular group did not lead to a meaningfully different risk assessment. Discrete time models performed better than time-to-event models. CONCLUSIONS: Different variable groups were predictive over different time horizons, with vital signs most predictive for near-term mortality and demographic and comorbidities more important in long-term mortality.
目的:电子健康记录(EHRs)是“大数据”分析的一种资源,包含多种数据元素。我们研究了不同类别的信息如何有助于预测接受血液透析治疗患者在不同时间范围内的死亡率。 材料与方法:我们使用来自全国连锁透析诊所的老年患者的EHR数据,并通过套索(LASSO,最小绝对收缩和选择算子)回归与行政数据相链接,得出了7个时间范围内死亡率的预测模型。我们评估了不同类别的信息与风险评估的关系,并将离散模型与事件发生时间模型进行了比较。 结果:最佳预测模型使用了所有可用数据(c统计量范围为0.72 - 0.76),近期模型更强。虽然不同变量组显示出不同的效用,但排除任何特定组并不会导致风险评估有显著差异。离散时间模型的表现优于事件发生时间模型。 结论:不同变量组在不同时间范围内具有预测性,生命体征对近期死亡率的预测性最强,而人口统计学和合并症在长期死亡率中更为重要。
J Am Med Inform Assoc. 2017-1
BMC Med Res Methodol. 2020-2-26
J Bone Joint Surg Am. 2016-5-18
Intern Emerg Med. 2017-12-30
BMC Med Inform Decis Mak. 2022-4-22
J Med Internet Res. 2019-4-5
J Am Med Inform Assoc. 2014
J Gerontol A Biol Sci Med Sci. 2014-1-30
Clin J Am Soc Nephrol. 2014-1