文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

预测不同时间范围内的死亡率:需要哪些数据元素?

Predicting mortality over different time horizons: which data elements are needed?

作者信息

Goldstein Benjamin A, Pencina Michael J, Montez-Rath Maria E, Winkelmayer Wolfgang C

机构信息

Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina

Center for Predictive Medicine, Duke Clinical Research Institute, Durham, North Carolina.

出版信息

J Am Med Inform Assoc. 2017 Jan;24(1):176-181. doi: 10.1093/jamia/ocw057. Epub 2016 Jun 29.


DOI:10.1093/jamia/ocw057
PMID:27357832
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5201182/
Abstract

OBJECTIVE: Electronic health records (EHRs) are a resource for "big data" analytics, containing a variety of data elements. We investigate how different categories of information contribute to prediction of mortality over different time horizons among patients undergoing hemodialysis treatment. MATERIAL AND METHODS: We derived prediction models for mortality over 7 time horizons using EHR data on older patients from a national chain of dialysis clinics linked with administrative data using LASSO (least absolute shrinkage and selection operator) regression. We assessed how different categories of information relate to risk assessment and compared discrete models to time-to-event models. RESULTS: The best predictors used all the available data (c-statistic ranged from 0.72-0.76), with stronger models in the near term. While different variable groups showed different utility, exclusion of any particular group did not lead to a meaningfully different risk assessment. Discrete time models performed better than time-to-event models. CONCLUSIONS: Different variable groups were predictive over different time horizons, with vital signs most predictive for near-term mortality and demographic and comorbidities more important in long-term mortality.

摘要

目的:电子健康记录(EHRs)是“大数据”分析的一种资源,包含多种数据元素。我们研究了不同类别的信息如何有助于预测接受血液透析治疗患者在不同时间范围内的死亡率。 材料与方法:我们使用来自全国连锁透析诊所的老年患者的EHR数据,并通过套索(LASSO,最小绝对收缩和选择算子)回归与行政数据相链接,得出了7个时间范围内死亡率的预测模型。我们评估了不同类别的信息与风险评估的关系,并将离散模型与事件发生时间模型进行了比较。 结果:最佳预测模型使用了所有可用数据(c统计量范围为0.72 - 0.76),近期模型更强。虽然不同变量组显示出不同的效用,但排除任何特定组并不会导致风险评估有显著差异。离散时间模型的表现优于事件发生时间模型。 结论:不同变量组在不同时间范围内具有预测性,生命体征对近期死亡率的预测性最强,而人口统计学和合并症在长期死亡率中更为重要。

相似文献

[1]
Predicting mortality over different time horizons: which data elements are needed?

J Am Med Inform Assoc. 2017-1

[2]
Designing an Implementable Clinical Prediction Model for Near-Term Mortality and Long-Term Survival in Patients on Maintenance Hemodialysis.

Am J Kidney Dis. 2024-7

[3]
[The Veneto Region's Registry of Dialysis and Transplantation: 2006-2007 report].

G Ital Nefrol. 2009

[4]
The application of unsupervised deep learning in predictive models using electronic health records.

BMC Med Res Methodol. 2020-2-26

[5]
Predicting Occurrence of Spine Surgery Complications Using "Big Data" Modeling of an Administrative Claims Database.

J Bone Joint Surg Am. 2016-5-18

[6]
Predictive modeling of inpatient mortality in departments of internal medicine.

Intern Emerg Med. 2017-12-30

[7]
Classifying individuals based on a densely captured sequence of vital signs: An example using repeated blood pressure measurements during hemodialysis treatment.

J Biomed Inform. 2015-10

[8]
Development of a novel score for the prediction of hospital mortality in patients with severe sepsis: the use of electronic healthcare records with LASSO regression.

Oncotarget. 2017-7-25

[9]
Validated, electronic health record deployable prediction models for assessing patient risk of 30-day rehospitalization and mortality in older heart failure patients.

JACC Heart Fail. 2013-6-3

[10]
Predicting 30-day Hospital Readmission with Publicly Available Administrative Database. A Conditional Logistic Regression Modeling Approach.

Methods Inf Med. 2015

引用本文的文献

[1]
Distinguishing Among Causes of Death for Patients with Kidney Failure on Hemodialysis.

Kidney360. 2025-3-1

[2]
Designing an Implementable Clinical Prediction Model for Near-Term Mortality and Long-Term Survival in Patients on Maintenance Hemodialysis.

Am J Kidney Dis. 2024-7

[3]
Quantifying the utility of islet autoantibody levels in the prediction of type 1 diabetes in children.

Diabetologia. 2023-1

[4]
Environmental and clinical data utility in pediatric asthma exacerbation risk prediction models.

BMC Med Inform Decis Mak. 2022-4-22

[5]
Preferences for Predictive Model Characteristics among People Living with Chronic Lung Disease: A Discrete Choice Experiment.

Med Decis Making. 2020-7

[6]
Machine Learning Offers Exciting Potential for Predicting Postprocedural Outcomes: A Framework for Developing Random Forest Models in IR.

J Vasc Interv Radiol. 2020-5-4

[7]
Development, Implementation, and Evaluation of an In-Hospital Optimized Early Warning Score for Patient Deterioration.

MDM Policy Pract. 2020-1-10

[8]
Applications of Machine Learning in Real-Life Digital Health Interventions: Review of the Literature.

J Med Internet Res. 2019-4-5

[9]
Evaluation of Machine-Learning Algorithms for Predicting Opioid Overdose Risk Among Medicare Beneficiaries With Opioid Prescriptions.

JAMA Netw Open. 2019-3-1

[10]
Minimal Impact of Implemented Early Warning Score and Best Practice Alert for Patient Deterioration.

Crit Care Med. 2019-1

本文引用的文献

[1]
Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review.

J Am Med Inform Assoc. 2017-1

[2]
Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent.

J Stat Softw. 2011-3

[3]
Predicting unplanned readmission after myocardial infarction from routinely collected administrative hospital data.

Aust Health Rev. 2014-9

[4]
Toward personalizing treatment for depression: predicting diagnosis and severity.

J Am Med Inform Assoc. 2014

[5]
Machine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry.

BMJ Open. 2014-3-17

[6]
Validated, electronic health record deployable prediction models for assessing patient risk of 30-day rehospitalization and mortality in older heart failure patients.

JACC Heart Fail. 2013-6-3

[7]
Predicting first-year mortality in incident dialysis patients with end-stage renal disease - the UREA5 study.

Blood Purif. 2014

[8]
Prognostic stratification in older adults commencing dialysis.

J Gerontol A Biol Sci Med Sci. 2014-1-30

[9]
Prognostic models for stable coronary artery disease based on electronic health record cohort of 102 023 patients.

Eur Heart J. 2014-4

[10]
Near-term prediction of sudden cardiac death in older hemodialysis patients using electronic health records.

Clin J Am Soc Nephrol. 2014-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索