Petrova Lucy, Gran Christine, Bjoras Magnar, Doetsch Paul W
Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, United States of America.
Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America.
PLoS One. 2016 Jun 30;11(6):e0158581. doi: 10.1371/journal.pone.0158581. eCollection 2016.
Mammalian cells are constantly and unavoidably exposed to DNA damage from endogenous and exogenous sources, frequently to the detriment of genomic integrity and biological function. Cells acquire a large number of chemically diverse lesions per day, and each can have a different genetic fate and biological consequences. However, our knowledge of how and when specific lesions are repaired or how they may compromise the fidelity of DNA replication or transcription and lead to deleterious biological endpoints in mammalian cells is limited. Studying individual lesions requires technically challenging approaches for the targeted introduction of defined lesions into relevant DNA sequences of interest. Here, we present a systematic analysis of factors influencing yield and an improved, efficient and reliable protocol for the production of mammalian expression phagemid vectors containing defined DNA base modifications in any sequence position of either complementary DNA strand. We applied our improved protocol to study the transcriptional mutagenesis-mediated phenotypic consequences of the common oxidative lesion 5-hydroxyuracil, placed in the G12 mutational hotspot of the KRAS oncogene. 5-OHU induced sustained oncogenic signaling in Neil1-/-Neil2-/- mouse cells. The resulting advance in technology will have broad applicability for investigation of single lesion DNA repair, mutagenesis, and DNA damage responses in mammalian cells.
哺乳动物细胞持续且不可避免地会受到来自内源性和外源性的DNA损伤,这常常会损害基因组完整性和生物学功能。细胞每天会产生大量化学性质各异的损伤,每种损伤都可能有不同的遗传命运和生物学后果。然而,我们对于特定损伤如何以及何时被修复,或者它们如何可能损害DNA复制或转录的保真度并导致哺乳动物细胞中有害的生物学终点的了解仍然有限。研究单个损伤需要采用技术上具有挑战性的方法,将特定损伤靶向引入到感兴趣的相关DNA序列中。在此,我们对影响产量的因素进行了系统分析,并提出了一种改进的、高效且可靠的方案,用于生产在互补DNA链的任何序列位置都含有特定DNA碱基修饰的哺乳动物表达噬菌粒载体。我们应用改进后的方案研究了位于KRAS癌基因G12突变热点的常见氧化损伤5-羟基尿嘧啶的转录诱变介导的表型后果。5-OHU在Neil1-/-Neil2-/-小鼠细胞中诱导了持续的致癌信号传导。由此产生的技术进步将在研究哺乳动物细胞中的单损伤DNA修复、诱变和DNA损伤反应方面具有广泛的适用性。