Suppr超能文献

基于剪枝动态规划的中心时间序列最小化动态时间规整距离方法。

Degree-Pruning Dynamic Programming Approaches to Central Time Series Minimizing Dynamic Time Warping Distance.

出版信息

IEEE Trans Cybern. 2017 Jul;47(7):1719-1729. doi: 10.1109/TCYB.2016.2555578. Epub 2016 Jun 28.

Abstract

The central time series crystallizes the common patterns of the set it represents. In this paper, we propose a global constrained degree-pruning dynamic programming (g(dp)2) approach to obtain the central time series through minimizing dynamic time warping (DTW) distance between two time series. The DTW matching path theory with global constraints is proved theoretically for our degree-pruning strategy, which is helpful to reduce the time complexity and computational cost. Our approach can achieve the optimal solution between two time series. An approximate method to the central time series of multiple time series [called as m_g(dp)2] is presented based on DTW barycenter averaging and our g(dp)2 approach by considering hierarchically merging strategy. As illustrated by the experimental results, our approaches provide better within-group sum of squares and robustness than other relevant algorithms.

摘要

中央时间序列凝聚了所代表集合的常见模式。在本文中,我们提出了一种全局约束度修剪动态规划(g(dp)2)方法,通过在两个时间序列之间最小化动态时间规整(DTW)距离来获得中央时间序列。我们的度修剪策略在理论上证明了具有全局约束的 DTW 匹配路径理论,这有助于降低时间复杂度和计算成本。我们的方法可以在两个时间序列之间实现最佳解决方案。基于 DTW 重心平均和我们的 g(dp)2 方法,通过考虑层次合并策略,提出了一种多时间序列的中央时间序列的近似方法[称为 m_g(dp)2]。实验结果表明,与其他相关算法相比,我们的方法提供了更好的组内平方和稳健性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验