IEEE Trans Cybern. 2017 Jul;47(7):1719-1729. doi: 10.1109/TCYB.2016.2555578. Epub 2016 Jun 28.
The central time series crystallizes the common patterns of the set it represents. In this paper, we propose a global constrained degree-pruning dynamic programming (g(dp)2) approach to obtain the central time series through minimizing dynamic time warping (DTW) distance between two time series. The DTW matching path theory with global constraints is proved theoretically for our degree-pruning strategy, which is helpful to reduce the time complexity and computational cost. Our approach can achieve the optimal solution between two time series. An approximate method to the central time series of multiple time series [called as m_g(dp)2] is presented based on DTW barycenter averaging and our g(dp)2 approach by considering hierarchically merging strategy. As illustrated by the experimental results, our approaches provide better within-group sum of squares and robustness than other relevant algorithms.
中央时间序列凝聚了所代表集合的常见模式。在本文中,我们提出了一种全局约束度修剪动态规划(g(dp)2)方法,通过在两个时间序列之间最小化动态时间规整(DTW)距离来获得中央时间序列。我们的度修剪策略在理论上证明了具有全局约束的 DTW 匹配路径理论,这有助于降低时间复杂度和计算成本。我们的方法可以在两个时间序列之间实现最佳解决方案。基于 DTW 重心平均和我们的 g(dp)2 方法,通过考虑层次合并策略,提出了一种多时间序列的中央时间序列的近似方法[称为 m_g(dp)2]。实验结果表明,与其他相关算法相比,我们的方法提供了更好的组内平方和稳健性。