Marteau Pierre-François
Université de Bretagne Sud, Vannes Cedex, France.
IEEE Trans Pattern Anal Mach Intell. 2009 Feb;31(2):306-18. doi: 10.1109/TPAMI.2008.76.
In a way similar to the string-to-string correction problem, we address discrete time series similarity in light of a time-series-to-time-series-correction problem for which the similarity between two time series is measured as the minimum cost sequence of edit operations needed to transform one time series into another. To define the edit operations, we use the paradigm of a graphical editing process and end up with a dynamic programming algorithm that we call Time Warp Edit Distance (TWED). TWED is slightly different in form from Dynamic Time Warping (DTW), Longest Common Subsequence (LCSS), or Edit Distance with Real Penalty (ERP) algorithms. In particular, it highlights a parameter that controls a kind of stiffness of the elastic measure along the time axis. We show that the similarity provided by TWED is a potentially useful metric in time series retrieval applications since it could benefit from the triangular inequality property to speed up the retrieval process while tuning the parameters of the elastic measure. In that context, a lower bound is derived to link the matching of time series into downsampled representation spaces to the matching into the original space. The empiric quality of the TWED distance is evaluated on a simple classification task. Compared to Edit Distance, DTW, LCSS, and ERP, TWED has proved to be quite effective on the considered experimental task.
与字符串到字符串的校正问题类似,我们从时间序列到时间序列的校正问题角度来处理离散时间序列相似性,其中两个时间序列之间的相似性被衡量为将一个时间序列转换为另一个时间序列所需的编辑操作的最小成本序列。为了定义编辑操作,我们使用图形编辑过程的范式,最终得到一种动态规划算法,我们称之为时间规整编辑距离(TWED)。TWED在形式上与动态时间规整(DTW)、最长公共子序列(LCSS)或带实罚分的编辑距离(ERP)算法略有不同。特别是,它突出了一个控制沿时间轴弹性度量某种刚度的参数。我们表明,TWED提供的相似性在时间序列检索应用中是一种潜在有用的度量,因为它可以受益于三角不等式性质来加速检索过程,同时调整弹性度量的参数。在这种情况下,推导出一个下限,以将时间序列在降采样表示空间中的匹配与在原始空间中的匹配联系起来。在一个简单的分类任务上评估了TWED距离的实证质量。与编辑距离、DTW、LCSS和ERP相比,TWED在考虑的实验任务上已被证明相当有效。