Suppr超能文献

伏隔核:不同药物类别的成瘾机制反映了谷氨酸稳态的重要性。

The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis.

作者信息

Scofield M D, Heinsbroek J A, Gipson C D, Kupchik Y M, Spencer S, Smith A C W, Roberts-Wolfe D, Kalivas P W

机构信息

Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)

Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.).

出版信息

Pharmacol Rev. 2016 Jul;68(3):816-71. doi: 10.1124/pr.116.012484.

Abstract

The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances.

摘要

伏隔核是基底神经节的主要输入结构,整合来自皮质和边缘系统结构的信息,以介导目标导向行为。长期接触几类滥用药物会破坏该区域的可塑性,使与药物相关的线索产生寻求药物的病理动机。在从长期药物暴露中戒断后,伏隔核内谷氨酸能传递会发生一些改变。这些药物诱导的神经适应性变化是复发易感性的分子基础。在本综述中,我们聚焦于伏隔核中的谷氨酸信号转导在成瘾相关行为中所起的作用。首先,我们探讨伏隔核,包括其中存在的细胞类型和神经元群体以及传入和传出连接。接下来,我们讨论成瘾的啮齿动物模型,并评估这些模型用于测试预防复发的候选药物疗法的可行性。然后,我们综述文献,描述滥用药物和戒断后伏隔核中的突触可塑性是如何改变的,以及伏隔核中谷氨酸系统的药理学操纵如何在实验室环境中抑制药物寻求行为。最后,我们研究临床试验的结果,其中旨在操纵谷氨酸系统的药物疗法已有效治疗人类患者的复发。进一步阐明滥用药物如何改变伏隔核内的谷氨酸能可塑性,对于开发针对所有成瘾物质类别的成瘾治疗新疗法将是必要的。

相似文献

1
伏隔核:不同药物类别的成瘾机制反映了谷氨酸稳态的重要性。
Pharmacol Rev. 2016 Jul;68(3):816-71. doi: 10.1124/pr.116.012484.
2
成瘾中的快速、瞬态突触可塑性。
Neuropharmacology. 2014 Jan;76 Pt B(0 0):276-86. doi: 10.1016/j.neuropharm.2013.04.032. Epub 2013 Apr 29.
3
新型成瘾药物潜藏于谷氨酸能神经可塑性之中。
Mol Psychiatry. 2011 Oct;16(10):974-86. doi: 10.1038/mp.2011.46. Epub 2011 Apr 26.
4
药物成瘾的突触病理学。
Adv Exp Med Biol. 2012;970:469-91. doi: 10.1007/978-3-7091-0932-8_21.
5
成瘾与大脑奖赏及抗奖赏通路。
Adv Psychosom Med. 2011;30:22-60. doi: 10.1159/000324065. Epub 2011 Apr 19.
6
关于药物成瘾中谷氨酸的好坏消息。
J Psychopharmacol. 2016 Nov;30(11):1095-1098. doi: 10.1177/0269881116655248. Epub 2016 Jun 28.
7
成瘾性四突触的交形可塑性:药物诱导适应性的共同基础和成瘾治疗的潜在靶点。
Neurobiol Learn Mem. 2018 Oct;154:97-111. doi: 10.1016/j.nlm.2018.02.007. Epub 2018 Feb 9.
8
星形胶质细胞功能障碍与成瘾:谷氨酸稳态失调的后果
Neuroscientist. 2014 Dec;20(6):610-22. doi: 10.1177/1073858413520347. Epub 2014 Feb 3.
9
多巴胺与谷氨酸的相互作用通过刺激腹侧下托介导觅药行为的恢复。
Int J Neuropsychopharmacol. 2014 Oct 31;18(1):pyu008. doi: 10.1093/ijnp/pyu008.
10
一种新型的海马-伏隔核通路小鼠脑片制备方法。
J Neurosci Methods. 2004 Aug 15;137(1):49-60. doi: 10.1016/j.jneumeth.2004.02.001.

引用本文的文献

1
伏隔核:用于治疗酒精使用障碍的放射调节治疗靶点。
Cureus. 2025 Jul 19;17(7):e88314. doi: 10.7759/cureus.88314. eCollection 2025 Jul.
3
异质种群大鼠可卡因自我给药行为的全基因组关联研究。
bioRxiv. 2025 Jul 28:2025.07.17.660811. doi: 10.1101/2025.07.17.660811.
7
可卡因诱导的伏隔核中D1和D2神经元集群的基因调控。
Commun Biol. 2025 Jun 12;8(1):919. doi: 10.1038/s42003-025-08327-x.
8
监督学习和无监督学习揭示了海洛因对星形胶质细胞结构可塑性的损害。
Sci Adv. 2025 May 2;11(18):eads6841. doi: 10.1126/sciadv.ads6841. Epub 2025 Apr 30.
9
觅食过程中伏隔核核心区域的多巴胺与钙动力学
bioRxiv. 2025 Mar 15:2025.03.11.642710. doi: 10.1101/2025.03.11.642710.
10
雄性大鼠伏隔核内可卡因戒断与消退的转录特征分析
Nat Commun. 2025 Mar 25;16(1):2886. doi: 10.1038/s41467-025-58151-4.

本文引用的文献

1
伏隔核 D1R 神经元投射到外侧下丘脑授权进食。
Neuron. 2015 Nov 4;88(3):553-64. doi: 10.1016/j.neuron.2015.09.038. Epub 2015 Oct 22.
2
N-乙酰半胱氨酸在可卡因摄入量增加后促进自我强制戒断。
Biol Psychiatry. 2016 Aug 1;80(3):226-34. doi: 10.1016/j.biopsych.2015.09.019. Epub 2015 Oct 8.
4
克拉维酸可增强小鼠谷氨酸转运体亚型I(GLT-1)的表达,并降低可卡因的强化效力。
Amino Acids. 2016 Mar;48(3):689-696. doi: 10.1007/s00726-015-2117-8. Epub 2015 Nov 5.
5
MMP-9的翻译:从分子到脑生理学、病理学及治疗
J Neurochem. 2016 Oct;139 Suppl 2:91-114. doi: 10.1111/jnc.13415. Epub 2016 Mar 21.
6
透明质酸和蛋白聚糖连接蛋白:大脑细胞外基质的组织者和神经元功能及可塑性的关键分子。
Exp Neurol. 2015 Dec;274(Pt B):134-44. doi: 10.1016/j.expneurol.2015.09.010. Epub 2015 Sep 24.
7
记忆印痕细胞已臻成熟。
Neuron. 2015 Sep 2;87(5):918-31. doi: 10.1016/j.neuron.2015.08.002.
8
通过粘附表面的蛋白水解重塑来调节突触。
Curr Opin Neurobiol. 2015 Dec;35:148-55. doi: 10.1016/j.conb.2015.08.005. Epub 2015 Aug 27.
9
皮质纹状体传入纤维调节对精神兴奋药物及药物相关刺激的反应性。
Neuropsychopharmacology. 2016 Mar;41(4):1128-37. doi: 10.1038/npp.2015.253. Epub 2015 Aug 20.
10
“与神经元 gag 反应”:糖胺聚糖模式在中枢神经系统中的作用。
Exp Neurol. 2015 Dec;274(Pt B):100-14. doi: 10.1016/j.expneurol.2015.08.004. Epub 2015 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验