Suppr超能文献

植物CRISP-Ex:一款基于网络且可独立运行的应用程序,用于查找CRISPR/CAS编辑的特定靶序列。

PhytoCRISP-Ex: a web-based and stand-alone application to find specific target sequences for CRISPR/CAS editing.

作者信息

Rastogi Achal, Murik Omer, Bowler Chris, Tirichine Leila

机构信息

Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, PSL Research University, CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005, Paris, France.

出版信息

BMC Bioinformatics. 2016 Jul 1;17(1):261. doi: 10.1186/s12859-016-1143-1.

Abstract

BACKGROUND

With the emerging interest in phytoplankton research, the need to establish genetic tools for the functional characterization of genes is indispensable. The CRISPR/Cas9 system is now well recognized as an efficient and accurate reverse genetic tool for genome editing. Several computational tools have been published allowing researchers to find candidate target sequences for the engineering of the CRISPR vectors, while searching possible off-targets for the predicted candidates. These tools provide built-in genome databases of common model organisms that are used for CRISPR target prediction. Although their predictions are highly sensitive, the applicability to non-model genomes, most notably protists, makes their design inadequate. This motivated us to design a new CRISPR target finding tool, PhytoCRISP-Ex. Our software offers CRIPSR target predictions using an extended list of phytoplankton genomes and also delivers a user-friendly standalone application that can be used for any genome.

RESULTS

The software attempts to integrate, for the first time, most available phytoplankton genomes information and provide a web-based platform for Cas9 target prediction within them with high sensitivity. By offering a standalone version, PhytoCRISP-Ex maintains an independence to be used with any organism and widens its applicability in high throughput pipelines. PhytoCRISP-Ex out pars all the existing tools by computing the availability of restriction sites over the most probable Cas9 cleavage sites, which can be ideal for mutant screens.

CONCLUSIONS

PhytoCRISP-Ex is a simple, fast and accurate web interface with 13 pre-indexed and presently updating phytoplankton genomes. The software was also designed as a UNIX-based standalone application that allows the user to search for target sequences in the genomes of a variety of other species.

摘要

背景

随着对浮游植物研究兴趣的不断增加,建立用于基因功能表征的遗传工具变得不可或缺。CRISPR/Cas9系统现已被公认为一种高效且准确的基因组编辑反向遗传工具。已经发表了几种计算工具,使研究人员能够找到用于构建CRISPR载体的候选靶序列,同时搜索预测候选序列的可能脱靶位点。这些工具提供了用于CRISPR靶标预测的常见模式生物的内置基因组数据库。尽管它们的预测高度敏感,但对于非模式基因组,尤其是原生生物的适用性使得它们的设计并不完善。这促使我们设计了一种新的CRISPR靶标查找工具PhytoCRISP-Ex。我们的软件使用扩展的浮游植物基因组列表提供CRISPR靶标预测,并且还提供了一个用户友好的独立应用程序,可用于任何基因组。

结果

该软件首次尝试整合大多数可用的浮游植物基因组信息,并提供一个基于网络的平台,用于在其中以高灵敏度进行Cas9靶标预测。通过提供独立版本,PhytoCRISP-Ex保持了与任何生物体一起使用的独立性,并扩大了其在高通量流程中的适用性。通过计算最可能的Cas9切割位点上限制酶切位点的可用性,PhytoCRISP-Ex超越了所有现有工具,这对于突变体筛选可能是理想的。

结论

PhytoCRISP-Ex是一个简单、快速且准确的网络界面,带有13个预先索引且正在更新的浮游植物基因组。该软件还被设计为基于UNIX的独立应用程序,允许用户在各种其他物种的基因组中搜索靶序列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/216d/4929763/2376d3cb43ca/12859_2016_1143_Fig1_HTML.jpg

相似文献

2
Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome.
BMC Plant Biol. 2016 Apr 21;16:96. doi: 10.1186/s12870-016-0787-3.
3
CrisprGE: a central hub of CRISPR/Cas-based genome editing.
Database (Oxford). 2015 Jun 27;2015:bav055. doi: 10.1093/database/bav055. Print 2015.
5
A quick guide to CRISPR sgRNA design tools.
GM Crops Food. 2015;6(4):266-76. doi: 10.1080/21645698.2015.1137690.
6
CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens.
Nucleic Acids Res. 2018 Jul 2;46(W1):W242-W245. doi: 10.1093/nar/gky354.
7
A Guide to Computational Tools and Design Strategies for Genome Editing Experiments in Zebrafish Using CRISPR/Cas9.
Zebrafish. 2016 Feb;13(1):70-3. doi: 10.1089/zeb.2015.1158. Epub 2015 Dec 18.
8
Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
Development. 2013 Dec;140(24):4982-7. doi: 10.1242/dev.099085. Epub 2013 Nov 20.
9
Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites.
Bioinformatics. 2015 Dec 15;31(24):4014-6. doi: 10.1093/bioinformatics/btv537. Epub 2015 Sep 10.
10
GUIDEseq: a bioconductor package to analyze GUIDE-Seq datasets for CRISPR-Cas nucleases.
BMC Genomics. 2017 May 15;18(1):379. doi: 10.1186/s12864-017-3746-y.

引用本文的文献

3
Application of Cas12j for Editing.
Biomolecules. 2024 Apr 16;14(4):486. doi: 10.3390/biom14040486.
4
Targeted Gene Editing of Nuclear-Encoded Plastid Proteins in Phaeodactylum tricornutum via CRISPR/Cas9.
Methods Mol Biol. 2024;2776:269-287. doi: 10.1007/978-1-0716-3726-5_17.
5
Genome-wide assessment of genetic diversity and transcript variations in 17 accessions of the model diatom .
ISME Commun. 2024 Jan 10;4(1):ycad008. doi: 10.1093/ismeco/ycad008. eCollection 2024 Jan.
6
Current Bioinformatics Tools to Optimize CRISPR/Cas9 Experiments to Reduce Off-Target Effects.
Int J Mol Sci. 2023 Mar 27;24(7):6261. doi: 10.3390/ijms24076261.
8
CRISPR genome editing using computational approaches: A survey.
Front Bioinform. 2023 Jan 11;2:1001131. doi: 10.3389/fbinf.2022.1001131. eCollection 2022.
9
CRISPR/Cas9 RNP-assisted validation of palmarumycin biosynthetic gene cluster in sp. F6932.
Front Microbiol. 2022 Sep 29;13:1012115. doi: 10.3389/fmicb.2022.1012115. eCollection 2022.
10
Trypsin is a coordinate regulator of N and P nutrients in marine phytoplankton.
Nat Commun. 2022 Jul 12;13(1):4022. doi: 10.1038/s41467-022-31802-6.

本文引用的文献

1
Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9.
Nat Biotechnol. 2016 Feb;34(2):184-191. doi: 10.1038/nbt.3437. Epub 2016 Jan 18.
2
Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach.
Nat Methods. 2015 Sep;12(9):823-6. doi: 10.1038/nmeth.3473. Epub 2015 Jul 13.
3
Ocean plankton. Determinants of community structure in the global plankton interactome.
Science. 2015 May 22;348(6237):1262073. doi: 10.1126/science.1262073.
4
Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean.
Science. 2015 May 22;348(6237):1261605. doi: 10.1126/science.1261605.
5
Ocean plankton. Structure and function of the global ocean microbiome.
Science. 2015 May 22;348(6237):1261359. doi: 10.1126/science.1261359.
6
CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences.
PLoS One. 2015 Mar 5;10(3):e0119372. doi: 10.1371/journal.pone.0119372. eCollection 2015.
7
Target specificity of the CRISPR-Cas9 system.
Quant Biol. 2014 Jun;2(2):59-70. doi: 10.1007/s40484-014-0030-x.
8
CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites.
Bioinformatics. 2015 Apr 1;31(7):1120-3. doi: 10.1093/bioinformatics/btu743. Epub 2014 Nov 20.
9
CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems.
PLoS One. 2014 Sep 23;9(9):e108424. doi: 10.1371/journal.pone.0108424. eCollection 2014.
10
sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites.
PLoS One. 2014 Jun 23;9(6):e100448. doi: 10.1371/journal.pone.0100448. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验